Смекни!
smekni.com

Голография: основные принципы и применение (стр. 4 из 5)

3.6.3 Длина волны света

Применяя свет нескольких длин волн, можно записать цветную голограмму. Разумеется, сама голограмма не является цветной, но при освещении ее светом со многими длинами волн, мы получаем цветное изображение. Другие названия голограмм, связанные с длиной волны, относятся к области спектра или типу применяемой волны; например, микроволновая голограмма, акустическая голограмма и рентгеновская голограмма.

3.7 Описание голограммы

Названия голограмм, рассмотренные нами, употребляются только в том случае, если голограмма чем-то отличается от стандартной. Если говорят, что кто-то собирается записать голограмму, то это, по всей вероятности, означает, что планируется использовать лазер, поместить фотопластинку в френелевскую область объекта, расположить внеосевой точечный опорный источник по крайней мере на таком же расстоянии от плоскости регистрации, на котором от нее находится объект, применять плоскую фотоэмульсию и регистрировать поверхностную голограмму.

4 НЕКОТОРЫЕ ВИДЫ ГОЛОГРАММ.

4.1 Мультикомплексные голограммы.

Мультикомплексной называют такую голограмму, на которой одновременно записано много изображений, либо раздельно записаны отдельные части одного изображения, либо единственное изображение записано несколько раз.

4.1.1 Пространственное мультиплексирование

При решении задачи хранения данных для записи многих голаграмм можно использовать единственную фотопластинку или какой-либо иной материал, причем каждая голограмма может независимо восстанавливать изображения записанных на ней данных. При этом голограммы могут образовывать решетку типа шахматного поля, а для считывания изображения с каждой голограммы лазерный луч сканирует по решетке.

Встречается и другой способ пространственного разделения голограммы, когда одна и та же объектная волна или волна от одного и того же объекта, но с разных ракурсов записывается на голограмме в виде полос. В первом случае полосковая голограмма просто повторно записывается много раз, так чтобы можно было восстановить изображение со всей голограммы. Второй случай имеет место при записи синтезированных голограмм для целей отображения информации.

4.1.2 Составные изображения

Под составными голограммами мы имеем в виду голограммы, которые формируют изображения, состоящие из отдельных частей каждая из которых была записана самостоятельно

4.1.3 Голограммы, записанные с помощью сканирующего источника света

Голограммы, записанные с помощью сканирующего источника— это такие голограммы, при регистрации которых использован; либо сканирующий пучок света для освещения объекта, либо сканирующий опорный пучок для освещения голограммы.

Сканирующий объектный пучок,

Иногда сечение освещающего объект пучка уменьшается в такой степени, что он не может больше освещать весь объект одновремено, а должен сканировать по объекту. В результате формируется многоэкспозиционная голограмма, в которой изображение каждго из освещаемых пучком участков объекта регистрируется отдельно.

Если размеры объекта велики, можно сузить освещающий объект пучок и заставить его сканировать по объекту, так чтобы на голограмму падала объектная волна большей яркости. Это позволит уменьшить время экспозиции, необходимое для записи голограммы рассматриваемой части объекта. Полную экспозицию уменьшить нельзя.

Недостатком использования голографической системы со сканированием помимо необходимости использовать более сложное оборудование является также уменьшение дифракционной эффективности голограммы. Это уменьшение связано с увеличением: фоновой экспозиции, которая возникает при записи с многократной экспозицией.

Сканирующий опорный пучок

В случае сканирования опорным пучком объект освещается целиком, но при этом опорный пучок сканирует по голограмме. Следовательно, можно увеличить полную интенсивность света, падающего на часть голограммы, и уменьшить время экспозиции для части голограммы. Это позволяет голографировать объекты, имеющие движение в ограниченных пределах. Однако такой мет приводит к уменьшению дифракционной эффективности, что объясняется увеличением энергии опорного пучка по отношению к объектному

4.2 Цветные голограммы

Цветными называют голограммы, способные воспроизводить цветные изображения. В сущности цветные голограммы — это мультиплексные голограммы, восстанавливающие перекрывающиеся изображения, каждое в своем цвете. Как и в случае мультиплексных голограмм, возникают различные проблемы в зависимости от того используются ли тонкие, т. е. поверхностные, голограммы или регистрирующая среда имеет заметную толщину. Голограммы, записанные на тонком материале, восстанавливают многократно повторяющиеся изображения, которые соответствуют многим дифракционным порядкам. Голограммы, записанные в толстой среде из-за усадки или набухания эмульсии могут не восстанавливаться освещением с исходной длиной волны. Если, например, рассматривать красные и белые изображения, то в противоположность черным и белым необходимо учитывать эффекты дисперсии. В случае голограммы сфокусированного изображения, поскольку расстояние между голограммой и телеграфируемым изображением; оказывается более коротким, таких проблем возникает меньше.

4.2.1 Голограммы, восстанавливаемые в белом свете

Голограмма представляет собой закодированную дифракционную решетку. Следовательно, когда голограмма освещается белым светом, волны с большими длинами волн отклоняются сильнее от оси освещающей голограмму волны, чем волны с более короткими длинами волн. В результате этого восстановленное изображение; смазывается. Такой эффект можно отчасти скомпенсировать, используя дифракционную решетку с шагом штриха, равным среднему периоду интерференционных полос на голограмме. Изложенные выше соображения применимы к тонким голограммам. Объемные голограммы обладают избирательностью по отношению к длине волны и будут отражать или пропускать только узкую полосу длин волн, обусловленную эффектом Брэгга.

5 ПРИМЕНЕНИЕ ГОЛОГРАФИИ

Голографический метод записи волнового фронта находит широкое применение в различных областях науки и техники и имеет перспективы в будущем. Перечислим лишь некоторые из них. Голограмму можно использовать в качестве комплексного оптического элемента. Такой оптический элемент может выступать во многих качествах. Известны голограммы, играющие роль линз (голограмма — зонная решетка), разлагающие свет в спектр (голограммы—дифракционные решетки), интерференционные фильтры (слои Липпмана) и т. д. Голографические дифракционные решетки содержат свыше 5000 полос на 1 мм. Метод голографии позволяет записывать на заданном малом участке фотоэмульсии (особенно толстослойной) в 100—400 раз больше страниц печатного текста, чем методы обычной микрофотографии. На обычную фотопластинку размером 32-32 мм2 можно записать 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма— страница книги, одна пластинка — целая большая книга.

Многообещающим является применение голографии при распознавании образов и символов, что позволит создать читающие автоматы, обладающие большой надежностью.

Голографические устройства с использованием звуковых радиоволн совместно со световыми волнами дадут возможность видеть предметы, рассеивающие звуковые или радиоволны (звуко- и радиовидение).

Метод голографической интерферометрии позволяет исследовать изменения (например, деформацию), происшедшие в наблюдаемом объекте под каким-либо внешним действием. В основе регистрации таких малых деформаций лежит явление интерференции двух волн, существовавших в разные моменты времени. Как можно осуществить интерференцию таких волн? Для этого на одну и ту же фотопластинку регистрируют две голограммы, полученные от одного и того же исследуемого объекта в разные моменты времени. Малейшее изменение формы объекта из-за деформации в промежутке между двумя регистрациями изменяет фазу предметной волны. Следовательно, если в промежуток времени между двумя экспозициями (важно, чтобы фотопластинка не сдвинулась между двумя экспозициями) произошли какие-то деформации, то при просвечивании этих голограмм увидим изображение объекта, перерезанное интерференционными полосами, по форме которых можно судить о характере деформации. Точность измерения этого метода весьма высокая: он позволяет измерить деформации порядка десятой доли микрона. Возможности контроля размеров, формы и качества обработки сложных деталей с помощью голографии сделают этот метод наиболее ценным в производстве.

Ценность голографической интерферометрии заключается еще и в том, что она позволяет при любых относительных измерениях обойтись без эталона сравнения, например при деформации поверхности, перемещении из одного состояния в другое или при сжатии исходное и конечное состояния могут служить эталонами друг относительно друга.