Смекни!
smekni.com

Гидродинамика (стр. 3 из 4)

Нагревание топочными газами с циркулирующим твердым зернистым промежуточным теплоносителем получает все более широкое распространение в технике. Этим способом можно нагревать различные технологические газы до температур порядка 1500°С. В качестве зернистых теплоносителей применяют жаростойкие твердые материалы (кварц, алюмосиликаты, диабаз, алунд, шамот и др.), измельченные до частиц размером 0,05—8 мм.

Рис. 5. Нагревательная установка с циркулирующим зернистым материалом, движущимся сплошным потоком:

1 — загрузочное устройство пневмотранспортной системы: 2 — аппарат для нагревания технологических газов; 3 топка под давлением; 4—распределительное устройство: 5— аппарат для нагревания зернистого материала; 6 -бункер-сепаратор; 7 - пневмотранспортная труба- 8-11 -патрубки; 12 -воздуходувка: /—топочные газы; //-технологи­ческие газы; ///—зернистый материал; /V—транспортирующий газ/

Зернистые материалы имеют очень большую удельную поверхность—до 500—100000 м23 в зависимости от размеров частиц. Благодаря этому в сравнительно небольших аппаратах удается разместить значительные теплообменные поверхности и осуществить почти полный теплообмен между заполняющими аппараты зернистыми материалами и продуваемыми через них газами.

Для нагревания топочными газами каких-либо других газов с помощью зернистых материалов могут быть применены установки двух типов: 1) с циркулирующим зернистым материалом, движущимся в- аппаратах сплошным потоком; 2) с циркулирующим зернистым материалом, который находится в аппаратах в псевдоожиженном состоянии.

Нагревательная установка с циркулирующим зернистым материалом, движущимся сплошным потоком, изображена на рис. 5. В футерованном огнеупорным кирпичом аппарате 5 находится зернистый материал. Через распределительное устройство 4 в аппарат из топки 3, работающей под давлением, поступают топочные газы. Устройство 4, выполненное, например, в виде нескольких перевернутых желобов, обеспечивает равномерное распределение потока топочных газов по сечению аппарата. Топочные газы, взаимодействуя противоточно с зернистым материалом, охлаждаются и выводятся через патрубок 9.

Зернистый материал поступает через патрубок 8 и движется в аппарате сплошным потоком по всему сечению, нагреваясь при этом топочными газами. Нагретый зернистый материал непрерывно выгружается через патрубок 10.

Аппарат 2 работает аналогично аппарату 5. В нем осуществляется нагревание технологических газов за счет взаимодействия с поступающим в верхнюю часть нагретым зернистым материалом. Охлажденный зернистый материал непрерывно отводится из аппарата 2 через патрубок II в загрузочное устройство 1 пневмотранспортной системы, куда воздуходувкой 12 подается транспортирующий газ. Последний подхватывает частицы зернистого материала и направляет их по пневмотранспортной трубе 7 в бункер-сепаратор 6. Здесь частицы осаждаются и пересыпаются в аппарат 5 а транспортирующий газ, освобожденный от твердых частиц, удаляется из аппарата.

Циркулирующий таким образом зернистый материал воспринимает тепло топочных газов в аппарате 5 и передает его нагреваемым технологическим газам в аппарате 2. Графики на рис. 5, построенные в координатах t— Н (температура— высота слоя зернистого материала), показывают характер изменения температур газов и зернистого материала в результате противоточного взаимодействия их. В аппарате 5 можно нагреть зернистый материал до температуры, на 510°С меньшей, чем температура поступающих в аппарат топочных газов, а в аппарате 2 можно нагреть технологические газы до температуры, на 5—10°Ñ меньшей, чем температура поступающего в аппарат зернистого материала. Работа этих аппаратов протекает в условиях, соответствующих условиям работы аппаратов идеального вытеснения. Температура нагретых в установке технологических газов лишь на 10—20 °С ниже температуры поступающих топочных газов.

Описанная установка может работать при скоростях газов в аппаратах 5 и 2, меньших, чем скорость псевдоожижения. Стремление повысить производительность установки увеличением скорости газов приводит к необходимости работать с частицами больших размеров (2--8 мм). Однако при этом уменьшается удельная поверхность зернистого материала и, следовательно, возрастают габариты аппаратуры. Кроме того, пневмотранспорт частиц больших размеров затруднителен и осуществляется при повышенных расходах транспортирующего газа.

НАГРЕВАНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ

.В химической технике довольно широко применяют нагревание электрическим током в электропечах. При нагревании электротоком необходимо предусматривать меры, предотвращающие перегрев материала и обеспечивающие электро- и пожаробезопасность.

По способу превращения электрической энергии в тепловую различают электрические печи сопротивления, индукционные и дуговые. Электрические лечи сопротивления делятся на печи прямого действия и печи косвенного действия. Электрические печи прямого действия. В этих печах нагреваемое тело включается непосредственно в электрическую цепь и нагревается при прохождении через него электрического : тока. Часто печь прямого действия представляет собой аппарат, корпус которого является одним из электродов; другой электрод размещают в аппарате. Между электродами помечтают жидкие или расплавленные нагреваемые материалы.

Электрические печи сопротивления косвенного действия получили большое распространение. В них тепло выделяется при прохождении электрического тока по специальным нагревательным элементам; выделяющееся тепло передается материалу лучеиспусканием, теплопроводностью и конвекцией. В таких печах осуществляется нагревание до температур 1000—1100°С. Схема такой печи показана на рис. 6. Футеровка печи 2 1:выполнена из огнеупорного кирпича. В пазах футеровки уложены спиральные нагревательные элементы 4, к которым подводится ток через электрошины 5, Тепло, выделяющееся при прохождении электрического тока через спиральные нагревательные элементы, передается обогреваемому аппарату 1 лучеиспусканием и конвекцией. Тепловая изоляция 3 уменьшает потери тепла в окружающую среду.

Нагревательные элементы печей изготовляют из проволоки либо из ленты нихрома (сплав, содержащий 20% Сг, 30—80% Ni и 0,5—50% Fe) или хроможелезоалюминиевых сплавов. Диаметр проволоки обычно 3—7 мм; в применяемых лентах отношение толщины к ширине 0,05—0,2.

Рис. 6. Элекрическая печь сопротивления косвенного действия: 1 —обогреваемый аппарат; 2— футеровка печи- 3—-тепловая изоляция; 4— спиральные нагревательные элементы; 5— выводные электрошины.

Количество тепла, которое необходимо подвести в процессе нагревания электрическим током, определяют из уравнениях теплового баланса:

где Qэколичество тепла, выделяющегося в нагревательном электрическом устройстве при прохождении электрического тока, кДж/ч; G-количество перерабатываемого в обогреваемом аппарате продукта, кг/ч; с—теплоемкость перерабатываемого продукта, кДж/(кгС); tн и tк—соответственно-начальная и конечная температура перерабатываемого продукта, °С; Qп— потери тепла в окружающую среду, кДж/ч.

Отсюда