Смекни!
smekni.com

Гелиоэнергетика: состояние и перспективы (стр. 5 из 9)

На основе эффекта Зеебека и создаются термоэлектрогенераторы. На рис.9 показана типичная конструкция термо­электрического генератора на основе проводников. Обычно проводники соединяются последовательно, так как разность потенциалов на выходе каждой пары проводников в реальных устройствах имеет величину порядка 300—400 мкВ на единицу, разности темпера­тур. Поэтому при разности температур 500 К выходное напряжение на каждой паре элементов составляет не более 0,2 В.

Рис. 9. Термоэлектрический генератор.

Работу реальных устройств сопровождают опреде­ленные необратимые явления. Возможна теплопере­дача от источника к охладителю непосредственно через элементы генератора. Внутри элементов при протекании тока выделяется джоулево тепло.

Для любой пары термоэлектрических элементов скорость теплопередачи через проводимость пропорци­ональна разности температур на их концах (при усло­вии отсутствия рассеяния тепла). Тогда справедливо уравнение

Qт=K (T1-T2), (3)

где К зависит от теплопроводности материалов, пло­щади поверхности и длины элементов.

Джоулево тепло, выделяющееся при прохождении тока I, равно

Qдж=I2R, (4)

Где К — общее сопротивление элементов, зависящее (как и теплопроводность) от удельного сопротивления материала, размеров и формы элементов. Если опять же предположить, что тепловые потери отсутствуют, то половина энергии, преобразованной в джоулево тепло, проходит к каждому из соединений.

Таблица 5

Термоэлектрические ряды

Ряд Зеебека (1822г.)

Ряд Юсти (1948)

Ряд Мейснера (1955)

Металлы и их соединения

Металлы

Полупроводники

PbS

Bi

Ni

Co

Pd

Pt

U

Au

Cu

Rh

Ag

Zn

C

Cd

Сталь

Fe

As

Sb

SbZn

Bi-80

Co-21

Ni-20

K-14

Pd-8

Na-7

Pt-5

Hg-5

C-3.5

Al-1.5

Rh+1

Zn+1.5

Ag+1.5

Au+1.5

Cu+2.0

W+2.5

Fe+12.5

Sb+42

Si+44

Te+49

Bi-70

Mi-18.0

Co-18.5

K-12

Pd-6

Pb-0.1

Sn+0.1

Rh+2.5

Zn+2.9

Mo+5.9

Fe+16

Sb+35

Te+400

Se+1000

MnS-770

ZnO-714

CuO-696

Fe3О4-500

FeS2-430

MoS-200

CuO-139

CdO-41

CuS-7

FeS+26

CdO+30

NiO+240

Mn2О3+385

Cu2O3+474

CuO+1120

Примечание: Величина термо-ЭДС дана в мкВ/град.

Получаемая в нагрузке мощность от такого генератора определяется из соотношения

P=S(T1-T2)I - I2R,

где S коэффициент Зеебека зависящий от материала проводника.

Если считать неизменными другие величины, значение КПД определяется только величиной тока. Установлено, что с уменьшением тока КПД сначала растет, а затем падает. Максимальное значение КПД зависит от параметра Z характеризующего некоторую совокупность свойств проводника, называемого добротностью. Для металлов Z очень мала, поэтому для изготовления ТЭГ применяют легированные полупроводники, для которых добротность при определенных температурах не превышает 0.0005 на 1 К. Тогда при температуре нагревателя 1000 К и охладителя 300 К, общий КПД преобразования составляет лишь около 7% и то при концентрации солнечного излучения с помощью зеркал.

Несмотря на то, что КПД современных термоэлек­трических генераторов очень мал, интерес к ним про­должает расти. Если учесть, что еще несколько деся­тилетий назад КПД термоэлектрических генераторов был в 10 раз ниже достигнутого в настоящее время, а поиск новых более совершенных материалов продолжается, то можно надеяться на дальнейшее усо­вершенствование этого типа генераторов. Например, если удастся достигнуть величины добротности 0,005 на 1К в диапазоне температур от 300 до 1000 К, то КПД генератора увеличится с 7 до 31%.

Следует заметить, что температурные изменения добротности могут благоприятно отразиться и на эф­фективности системы, состоящей из плоского коллек­тора и термоэлектрического генератора (рис. 10). Ма­ксимальная температура в данном случае значитель­но ниже, но для достаточно узкого интервала темпе­ратур можно подобрать такую пару термоэлектриче­ских материалов, которые обеспечат сравнительно вы­сокую добротность. При температуре Т= 400 К и Z =0,002 на 1 К суммарный КПД составляет около 3,5%. Если учесть, что получение такой рабочей температуры не связано с применением сложных концентраторов, снабженных устройством, следящим за движением солнца, то си­стема подобной конструкции оказывается вполне при­емлемой. Относительно низкая величина КПД си­стемы обусловлена входящим в ее состав генератором.

Рис. 10. Термоэлектрический генератор с плоским коллектором.

Из всего сказанного видно, что эффективность систем, в которых солнечная энергия используется для нагревания со­ответствующих устройств, принципиально ограничена, в результате чего полезно реализуется лишь незначи­тельная доля падающей солнечной энергии. Даже по самым оптимистическим прогнозам КПД подобных устройств не превысит 40%.

Таким образом, дальнейшее исследование устройств для преоб­разования энергии, в которых исходная стадия яв­ляется тепловой, кажется бесполезным. В одном из таких устройств, которому еще 10 лет назад отводилось важное место при решении вопросов крупномасштабного получения энергии, использован магнитогидродинамический эф­фект, или МГД-эффект, но последние исследования, а в большей степени практические реализации такого устройства показали, что его использование из-за низкого КПД неэффективно. В следующей главе будут описаны другие методы получения энергии. Их существенное отличие заключается в том, что они по­зволят использовать энергию солнечной радиации без сколько-нибудь заметного повышения температуры элементов систем, то есть тепловая стадия в процессе преобразования энергии исключается.

Глава 2. Фотоэлектрические генераторы.

В преобразователях световой энергии в электриче­скую используется фотоэффект, открытый в 1887 г. Гер­цем и обстоятельно исследованный, начиная с 1888 г. Столетовым.

Фотоэффект выражается в «выбивании» электронов фотонами света с поверхности тел (внешний фотоэф­фект) или только из кристаллической решетки внутри полупроводника (внутренний фотоэффект), а также в возникновении под действием света, падающего на границу металл — полупроводник (или n-полупроводник и p-полупроводник) ЭДС, вызывающей появление или изменение тока в цепи (фотоэффект запирающего слоя или вентильный фотоэффект).

Устройства, основанные на внешнем и внутреннем фотоэффекте рассматриваться не будут т.к. они аналогичны термоэлектронным генераторам, рассмотренным выше - различаются лишь способом получения электронного пучка. Можно только отметить, что КПД таких генераторов очень низок - всего 0.5-1%. Столь низкий КПД является причиной того, что при исследовании вопросов получения энергии фотоэмиссионным генераторам отводится незначительная роль, хотя возможно используя какие-то оригинальные конструкции, их КПД можно значительно повысить. Однако все эти возможности остались неисследованными в связи с появлением фотоэлектрических генераторов использующих вентильный фотоэффект.

Вентильный фотоэлектрический генератор.

Вентильный фотоэффект (фотоэффект запирающего слоя), являющийся разновидностью внутреннего фотоэффекта, это возникновение ЭДС (фото-ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего магнитного поля).

Фотоэффект запирающего слоя положен в основу устройства полупроводниковых, или, как их еще иначе называют, вентильных фотоэлементов — приборов, непо­средственно превращающих лучистую энергию в электри­ческую.

Рис. 11. Принцип действия солнечного электрогенератора.

Фотоэлементы с запирающим слоем строятся с 1888г., т.е. со времени открытия этого эффекта Ульяниным (учеником Столетова), однако их КПД при использо­вании металлов не превышает 1 %. Применение полупро­водников с различными типами проводимости дало значительно лучшие результаты. Принцип действия такого фотоэлемента состоит в следующем.