Смекни!
smekni.com

Гелиоэнергетика: состояние и перспективы (стр. 2 из 9)

αс Р = εσТ4, (1)

где ε — излучательная способность пластины при низких температурах.

Тогда равновесную темпера­туру Т мы получим из уравнения

(2)

Очевидно, равновесная температура тем выше, чем больше отношение αс. А согласно табл. 3 [Бринкворт], это отношение иногда, в частности для полированных металлов, достигает значений 2-3, но чаще оно много меньше. Однако полированные металлы вследствие их низкой поглощательной способности непригодны для изготовления коллекторов солнечного излучения. Для подобных целей обычно выбирают материалы с высо­кой поглощательной способностью, для которых отно­шение αс близко к 1. Такие материалы называются нейтральными поглотителями. Полагая Р = 800 Вт/м2 (типичная интенсивность сол­нечного излучения в тропиках в летнее время), из уравнения (2) мы находим значение равновесной температуры, равное 343 К (70° С). Эта величина действительно близка к реальной темпе­ратуре черной пластины, установленной на длительное время под тропическим солнцем.

Таблица 3

Радиационные характеристики веществ

Вещество

Температура тела или источника

излучения

20-100° С

5000° С

ρ

α

ε

ρ

α

Полированные металлы

Оксидированные металлы

Белое глянцевое покрытие

Черное матовое покрытие

Алюминиевое покрытие

Бетон

Черепичная крыша

Стекло

0.9

0.2

0.1

0.05

0.5

0.1

0.1

0.1

0.1

0.8

0.9

0.95

0.5

0.9

0.9

0.9

0.1

0.8

0.9

0.95

0.5

0.9

0.9

0.9

0.7

0.8

0.8

0.1

0.8

0.4

0.2

0.1

0.3

0.2

0.2

0.9

0.2

0.6

0.8

0.0

Важным фактором, влияющим на собира­ние солнечной энергии, является длинноволновое излучение, приходящее из атмосферы. Оно испускается главным образом молекулами углекислого газа и во­дяного пара при поглощении ими прямого солнечного излучения, а также излучения, отраженного от земли и обусловленного конвекцией. Спектры поглощения этих молекул, связанные с их колебательными и вра­щательными движениями, лежат в видимой и инфра­красной областях. Общая интенсивность Ра этого излучения сущест­венно зависит от содержания в атмосфере водяного пара, особенно вблизи земной поверхности. При повы­шенной влажности и сплошной облачности атмосфера ведет себя примерно так же, как черное тело с темпе­ратурой около 280 К (10° С); соответствующая интен­сивность излучения на горизонтальной поверхности составляет около 300 Вт/м2. Общая же интенсивность атмосферного излуче­ния редко падает ниже 100 Вт/м2. Для собирания этого излучения применяют так называемые селективные поглотители. Обычно такой поглотитель представляет собой полированную металлическую поверхность, по­крытую тонкой темного цвета защитной пленкой оки­сей никеля или меди. Его поглощательная способность в коротковолновой области довольно высока, порядка 0,9. При очень тонком покрытии подобный поглотитель прозрачен для излучения с длиной волны, превышаю­щей его толщину. Тогда его излучательная способность в длинноволновой части спектра должна быть не выше, чем у металла, то есть около 0,1. Равновесная темпе­ратура такого селективного поглотителя с величиной отношения αс, близкой к 9, в рассмотренных ранее условиях должна повыситься до 427 К, или 1540С (если интенсивность длинноволнового атмосферного излучения составляет 200 Вт/м2, а поглощательная способность к этому виду излучения равна 0,1). Одна­ко добиться такого существенного улучшения практи­чески очень сложно. Основная трудность заключается в том, что большинство селективных покрытий очень чувствительно к пылевому загрязнению, и в естествен­ных условиях их характеристики со временем быстро ухудшаются.

Дальнейшего повышения равновесной температуры поглотителя можно добиться, если с помощью зеркал сконцентрировать на нем энергию солнечного излучения. На рис. 2 схематически показано одно из таких простейших устройств с плоскими зеркалами. Очевидно, что при использовании полностью отражающей зеркальной системы интенсивность облучения поглотителя увеличивается пропорционально отношению общей облучаемой поверхности зеркал к поверхности поглотителя. Этот показатель называется коэффициентом концентрации К. Зеркала монтируют таким образом, чтобы все падающие лучи были направлены на поверхность поглотителя. Если поглотитель квад­ратной формы снабжен, как показано на рис. 2, че­тырьмя зеркалами того же размера (что облегчает компоновку и сборку устройства), установленными под углом β = 60°, то в этом случае коэффициент концентрации равен 3. На практике реализовать все достоинства подобной конструкции оказывается невоз­можным, поскольку отражающая способность зеркал меньше 100%, а при малых углах падения поглощательная способность поглотителя снижается. Тем не менее, величина К, как правило, бывает не ниже 2. В данных условиях равновесная температура плоского солнечного коллектора с зеркальными отражателями рассмотренного типа достигает 180° С (для ней­трального поглотителя) и 332° С (для селективного


Рис. 2. Концентрация солнечного

излучения с помощью плоских зеркал.

Рис.3. Концентрация солнечного

излучения с помощью параболического зеркала.


поглотителя). Следует заметить, что в данном случае с помощью рефлекторов усиливается лишь прямая составляющая солнечной радиации, так как скон­центрировать рассеянную составляющую оказывается невозможным.

Наиболее совершенной конструкцией обладает па­раболический концентратор, который фокусирует сол­нечные лучи так, как это показано на рис. 3. В ре­зультате коэффициент концентрации значительно уве­личивается. На первый взгляд кажется, что в фокусе такого концентратора можно получить совершенно невероятную равновесную температуру, однако на практике этому препятствует непараллельность сол­нечных лучей. Если для плоского зеркального отражателя подобное об­стоятельство не имеет существенного значения, то в случае параболического концентратора оно ограничи­вает величину коэффициента концентрации. Вслед­ствие непараллельности лучей их энергия собирается не точно в фокусе (точке), а в некоторой области во­круг него. На рис. 3 показаны траектории лучей, исходящих от противоположных краев солнечного диска и попадающих в точки А и Б. Поэтому для получения максимального количества энергии облучаемое тело должно быть достаточно большим, чтобы принять все лучи, отраженные от концентрато­ра. Кроме того, с ухудшением оптических свойств зеркальной поверхности концентратора и с увеличением размеров приемника солнечной энергии уменьшается эффективное значение К, а, следователь­но, и равновесная температура,

При среднем качестве зеркал и использовании приемников, доста­точно полно воспринимающих отраженное излучение, К обычно не превышает 10000. Равновесная темпера­тура составляет для такого коллектора около 1930К (1660° С).

Кроме обычных плоских коллекторов и коллекторов с концентраторами существуют и другие конструкции солнечных коллекторов, например солнечный бассейн. В таком устройстве поглотителем служит непосредственно водный бассейн, который при необходимости можно оборудовать любым покрытием. Под воздействием солнечной радиации температура воды повышается как за счет непосредст­венного поглощения водой фотонов энергии, так и за счет теплообмена между поглощающим излучение днищем бассейна и водой. При нагревании вода рас­ширяется и нагретые более легкие слои поднимаются вверх. Было обна­ружено, что в некоторых природных водоемах самые нагретые слои воды оказываются скорее на дне, чем на поверхности. Как предполагают, это явление обу­словлено высоким содержанием соли в таких во­доемах и температура изменяется с глубиной бас­сейна так же, как и концентрация соли, которая у поверхности воды оказывается ниже, чем у дна. Ре­зультаты экспериментов показали, что равновесная температура в подобных бассейнах может достигать 100° С.

Процесс поглощения солнечной радиации осуществляется здесь отчасти в толще воды, а отчасти у дна бассейна. Он сопровождается сложным перераспределением энергии между различными сло­ями жидкости за счет теплопроводности и излучения. Вследствие этого характеристики излучения бассейна определяются его поглощающими свойствами. Для простоты можно считать, что такой бассейн подо­бен плоскому коллектору, поглотитель которого по своим свойствам занимает некоторое промежуточное положение между рассмотренными ранее нейтральным и селективным поглотителями.