4.
Процесс охлаждения рабочего тела в действительности заменяется выхлопом и выталкиванием отработанных газов и последующим засасыванием рабочей смеси (линия 4’-4-5-1).5. Процесс всасывания заканчивается позднее точки 1 (в точке 1’) так, что от точки 4’ до 1’ в цилиндре находится не постоянное количество рабочего тела.
КПД тепловых двигателей и второе начало термодинамики.
КПД тепловой машины определяется следующей формулой:
h=W/½QH½ | (5) |
, где W - полезная работа совершенная этой машиной, QH - теплота сообщенная этой машине (Q взято под знак модуля, в связи с тем, что тепловой поток может иметь разное направление).
По закону сохранения энергии получаем соотношение:
½QH½=W+½QL½
, где ½QL½ - количество теплоты отводимой при низкой температуре.
Таким образом, W=½QH½-½QL½, и КПД двигателя можно записать в виде:Из этого соотношения видно, что чем больше будет КПД двигателя, тем меньше будет теплота½QL½. Однако опыт показал, что величину ½QL½ невозможно уменьшить до нуля. Если бы это было осуществимо, то мы получили бы двигатель с КПД 100%. То, что такой идеальный двигатель, непрерывно совершающий рабочие циклы, невозможен, составляет содержание ещё одной формулировки второго начала термодинамики:
Невозможен такой процесс, единственным результатом, которого было бы преобразование отобранной у источника теплоты Q, при неизменной температуре, полностью в работу W, так, что W=Q.
Эта утверждение известно как формулировка второго начала термодинамики Кельвина-Планка.
Существует также аналогичное утверждение относительно холодильника, высказанное Клаузисом:
Невозможно осуществить периодический процесс, единственным результатом, которого был бы отбор теплоты у одной системы при данной температуре и передача в точности такого же количества теплоты другой системе при более высокой температуре.
Уравнение Ван-дер-Ваальса.
В реальных тепловых двигателях используются реальные газы. Как было замечено поведение их заметно отклоняется, например, при высоком давлении, от поведения идеального газа. Ян Д. Ван-дер-Ваальс (1837-1923) исследовал эту проблему с точки зрения МКТ и в 1873 году получил уравнение более точно описывающее поведение реальных газов. Свой анализ он основывал на МКТ, но при этом учитывал:
A. Все молекулы имеют конечные размеры (классическая МКТ ими пренебрегает)
B. Молекулы взаимодействуют друг с другом всё время, а не только во время столкновений.
Предположим, что молекулы газа представляют собой шарики с радиусом r. Если считать, что такие молекулы ведут себя подобно твердым сферам, то две молекулы будут сталкиваться и разлетаться в разные стороны при расстоянии между центрами равным 2r. Таким образом, реальный объем, в котором могут двигаться молекулы несколько меньше, чем объем V сосуда содержащего газ. Величина этого "недоступного объема" зависит от объема молекул газа и от количества этих молекул. Пусть b представляет собой "недоступный объем" в расчете на один моль газа. Тогда в уравнении состояния идеального газа нужно заменить V на V-nb, где n - число молей газа, и мы получим:
P(V-nb)=nRT
Если разделить это выражение на n и считать, что величина v==V/n является объемом, который занят одним молем газа (v - удельный объем), то получим:
P(v-b)=RT | (9) |
Это соотношение показывает, что при данной температуре давление
P=RT/(v-b)
будет больше, чем в идеальном газе. Это происходит потому, что уменьшение объема означает, что число столкновений со стенками возрастает.
Следует учесть гравитационное взаимодействие между молекулами, равное:
F~m1m2
, где m1 и m2 - массы молекул.
Внутри газа силы притяжения действуют на молекулу во всех направлениях. Однако на молекулу, находящуюся на краю газа действует результирующая сила, направленная внутрь. Молекулы, которые направляются к стенке сосуда, замедляются этой направленной результирующей силой и, таким образом, действуют на стенку с меньшей силой; следовательно, эти молекулы создают меньшее давление, чем в том случае, когда силы притяжения отсутствуют. Уменьшенное давление будет пропорционально числу молекул, приходящихся на единицу объема в поверхностном слое газа, а также числу молекул в следующем слое газа, создающим направленную внутрь силу. Поэтому можно ожидать, что давление уменьшится на величину пропорциональную (N/V)2. Поскольку N=nNA можно записать (N/V)2=( nNA/V)2= NA2/v2; следовательно, давление уменьшится на величину пропорциональную 1/v2. Если для определения давления используется выражение (9), то получаемое давление нужно уменьшить на величину a/v2, где a - коэффициент пропорциональности.
Таким образом, мы имеем: