Смекни!
smekni.com

Взаимодействие коротких акустических импульсов с неоднородностями на поверхности твердого тела (стр. 2 из 6)

На поверхности твердого тела могут распространяться акустические волны более сложной структуры. Одной из таких поверхностных волн является волна Рэлея. В простом случае изотропного твердого тела эта волна содержит продольную и поперечную компоненты, сдвинутые по фазе на p/2 и лежащие в плоскости, определяемой волновым вектором и нормалью к поверхности. Таким образом, в общем случае рэлеевская волна является эллиптически поляризованной. Толщина слоя вещества, приводимого в движение волной Рэлея составляет величину порядка длины волны l. Поскольку рэлеевские волны локализованы вблизи поверхности, они очень чувствительны к поверхностным дефектам кристалла.

На поверхности полубесконечной пьезоэлектрической среды возможно распространение поперечной поверхностной волны, поляризованной параллельно поверхности, и с глубиной проникновения тем меньшей, чем сильнее пьезоэлектрические свойства среды. Это так называемые акустоэлектрические волны или волны Гуляева-Блюштейна. По сравнению с рэлеевскими волнами, глубина проникновения волны Гуляева-Блюштейна вглубь образца существенно больше и может превышать величину 100l. Для существования поверхностной акустоэлектрической волны кроме выполнения механических и электрических граничных условий должны быть выполнены условия определенного расположения элементов симметрии кристалла относительно саггитальной плоскости.

Теоретическое описание акустических волн на поверхности твердого тела.

Волны Рэлея.

Как уже отмечалось ранее на поверхности твердого тела могут существовать волны различных типов. Волна Рэлея на свободной поверхности состоит из продольной волны сжатия-растяжения и поперечной волны сдвига. Вторым важным типом поверхностных акустических волн является волна Гуляева-Блюштейна (ВГБ), которая так же может существовать на свободной поверхности твердого тела, но в отличие от рэлеевской волны существование ВГБ возможно только на определенных срезах и в определенных направлениях пьезоэлектрических кристаллов. В системе полупространство-слой чисто механическое возмущение границы приводит к образованию сдвиговой волны Лява. Волны Лява находят некоторое применение на практике в лабораторных исследованиях. В теории эти волны часто используют в качестве простейшей модели поверхностных волн, так как расчеты для волн Лява существенно проще, чем для волн Рэлея. Так же следует отметить случай, когда на поверхности имеются неровности. Приповерхностная жесткость в такой системе меньше за счет наличия канавок, что приводит к образованию сдвиговых поверхностных волн (СПВ). Скорость волны в приповерхностной области уменьшается, так как волна как бы обегает выступы, проходя при этом больший путь. В данной работе проводится исследование распространения рэлеевской волны по поверхности твердого тела, которая имеет как случайные неоднородности (шероховатая поверхность) так и искусственные дефекты представляющие из себя наноразмерную периодическую структуру.


При описании волн Рэлея [7], распространяющихся вдоль границы изотропного упругого полупространства (рис.3), смещение

удобно выражать через скалярный j и векторный
потенциалы:

(1)

причем такое представление возможно при любой пространственной структуре волновых полей и соответствует разделению волны на волну сжатия (j) и волну сдвига (

). Уравнения для j и
независимы и записываются в виде:

,
, (2)

где D-оператор Лапласа,

и
-скорости продольной и поперечной акустических волн соответственно. При распространении волны вдоль оси x (рис.1) и векторе смещения, лежащем в плоскости xz, векторный потенциал имеет одну компоненту
, отличную от нуля. При этом смещения
и
даются формулами:

,
. (3)

Используя эти выражения и закон Гука для изотропного тела, можно записать отличные от нуля компоненты тензора напряжений:

,

,

, (4)

,

где

и
-постоянные Ламе, причем
,

(

-плотность упругого тела).

Решения уравнений (2), описывающие поверхностную акустическую волну, имеют вид:

, (5)

,

где

и
- частота и волновое число волны,
и
- амплитуды двух компонент волны,
и
-коэффициенты, описывающие спадание волн сжатия и сдвига в глубь поверхности.

Из уравнений движения (2) следует, что

,
,
>
,

где

,
- волновые числа продольной и сдвиговой объемных волн.

На свободной границе полупространства z=0 должны выполняться условия отсутствия напряжений

. Из выражений (4) при этом следует: