Смекни!
smekni.com

Варіаційні принципи механіки (стр. 2 из 6)

(3)

Щоб уявний рух відбувався протягом того самого проміжку часу і між тими самими положеннями А та В, що й дійсний рух матеріальної точки, функції ξ1(t), ξ2(t), ξ3(t) треба піді­брати так, щоб вони перетворювались в нуль у початковий і кінцевий моменти часу, тобто при t = t0 і t =t1:

ξ1(t0)= ξ2(t0)= ξ3(t0)=0, ξ1(t1)= ξ2(t1)= ξ3(t1)=0 (4)

При аналітичному визначенні уявних рухів ми здійснили малу зміну виду функцій x(f), y(t), z(t), які описують дійсний рух. Ця зміна, яка полягає в переході від функцій x(t), y(t), z(t) до нових функцій

що нескінченно мало відрізняються від старих функцій, назива­ється варіюванням функцій x(t), y(t), z(t). Прирости функцій, що знаходяться в резуль­таті варіювання, позначаються символом δ і називаються варіаціями функцій:

(5)

Користуючись поняттям варіації, можна стверджувати: якщо дій­сний рух точки відбувається за законом x=x(t), y=y(t), z=z(t), то порівнювані з ним уявні кінематично можливі рухи відбуваються за законом

Оскільки вибір варіацій δх, δy, δz довільний, то існує нескінчен­на множина уявних кінематично можливих рухів точки між заданими її положеннями.

1.2. Дійсний і уявні рухи для невільної матеріальної точки.

У випадку невільної матеріальної точки сформульовані вище в п.1.1. умови, які визначають клас кінематично можливих уяв­них рухів, слід доповнити ще однією: уявний рух точки по­винен бути узгоджений з зв'язками, не повинен порушувати їх[5]. Тому всі попередні результати справедливі і для руху невільної матеріальної точки, якщо тільки в рівняннях ру­ху точки використано незалежні узагальнені координати, які позначимо q1, q2 (при одній ступені вільності матимемо лише одну координату q). У цьому випадку, якщо дійсний рух точки визначається незалежними координатами q1(t), q2(t) , то, ана­логічно до попереднього, уявний кінематично можливий її рух буде характеризуватись функціями

Варіації координат тут дорівнюють

У випадку однієї ступені вільності уявний рух визна­чається однією координатою

. Варіація коор­динати дорівнює

1.3. Дійсний і уявні рухи для механічної системи.

Випа­док системи не відрізняється принципово від з'ясованого вище випадку однієї матеріальної точки. Нехай дійсний рух невіль­ної голономної механічної системи з п ступенями вільності ви­значається п незалежними координатами qk(t), (k=1, 2, ..., п). Уявний кінематично можливий її рух визначатиметься варійованими координатами

, (6)

де ε — нескінченно малий параметр, a ξk(t)довільні функції. Ці функції слід вибирати так, щоб вони перетворювались в нуль на кінцях часового інтервалу (t0, t1), протягом якого розгляда­ється рух системи. Варіації координат системи тут дорівнюють

.

Отже, поряд з дійсним рухом механічної системи, який від­бувається між положеннями А і В за проміжок часу (t0, t1), розглядаються нескінченно близькі до дійсного кінематично можливі (уявні) її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух і за той самий проміжок часу (t0, t1) та узгоджені з зв'язками системи.

Уявні рухи, що задовольняють ці вимоги, називатимемо можливими в розумінні Остроградського.

Доведемо тепер властивість комутативності варіювання і диференціювання, яку будемо використовувати нижче при розгляді принципу. Перепишемо (6) у вигляді

, і продиференціюємо по часу:

(7)

Але за своїм змістом ліва частина цієї рівності є варіацією функції

, тобто це є
. Отже, з (7) знаходимо

, (8)

що означає: операція диференціювання по незалежній змінній t і операція варіювання є комутативними.

1.4. Функція Лагранжа та її інтеграл у дійсному і уявному рухах.

Нехай при дійсному русі функція Лагранжа системи є L(q, ˙q, t), а в уявному вона дорівнює

[6], де

Розкладаючи в ряд Тейлора, знайдемо

(9)

Головна, лінійна відносно e, частина приросту функції L називається першою варіацією цієї функції, вона позначається δL і дорівнює

Інші доданки ряду (9), які згруповано за степенями ε, нази­ваються, відповідно, другою, третьою і т. д. варіаціями функції L і позначаються так:

δ2L, δ3L, ..., δkL,...

Функцію Лагранжа (9) для уявного руху можна подати тепер як ряд

(10)

Ми дістали формулу, яка визначає функцію Лагранжа для уявного руху через функцію Лагранжа й її варіації в дійсному русі точки.

Щоб встановити аналогічну формулу для інтеграла від функ­ції Лагранжа, помножимо ряд (10) на елементарний проміжок часу dt і проінтегруємо від моменту to до моменту t1. Матимемо:

(11)

Інтеграл

, (12)

аргументом якого є функція q(t), слід розглядати як фунаціонал[7].

У співвідношенні (11) інтеграл лівої частини рівності є функціонал, обчислений для довільного уявного руху. Перший інтеграл правої частини –той самий функціонал, обчис­лений для дійсного руху точки. Другий інтеграл правої частини у формулі (11) є головною, лінійною відносно δq (відносно ε) частиною приросту цього функціоналу.

Головна, лінійна, частина приросту функціоналу називається першою його варіацією і позначається δS або

.

На підставі (11) і означення першої варіації функціоналу маємо:

, (13)

тобто операції інтегрування і варіювання комутативні (слід підкреслити, що доведена властивість справджується тільки за умови, що розглядаються уявні рухи у визначеному вище розумінні Остроградського, коли параметр t відіграє роль неза­лежної змінної).

Інші інтеграли правої частини формули (11) є послідовно так звані друга, третя і т. д. варіації функціоналу S, які позна­чаються так: δ2S,
δ3
S, ... . Тому ряд (11) можна переписати у вигляді

(14)

або у вигляді приросту функціоналу

(15)

Розділ ІІ. Варіаційні принципи механіки

1.1 Принцип Остроградського-Гамільтона

Інтеграл із змінною верхньою границею

(16)

називається дією за Остроградським. Розмірність дії є Дж×с, тобто вона така сама, як розмірність сталої Планка h, що характеризує елементарний «квант дії».