Смекни!
smekni.com

В.Б. Кирьянов. Задача равновесий (стр. 3 из 4)


4.Правила двойственного соответствия. Итак, для одной и той же задачи затрат:

q 1
p2 a q 2 ,
p1

мы получили ее прямую и двойственную части:

q 1 : min áp1 , q 1ñпри a q 1³ q 2

и

p2 : max áp2 , q 2ñпри p2 a £ p1 .

Обе они, несмотря на различные "сопряженные" наборы искомых неизвестных: в одной q 1, а в другой p2 ,- объединены одними и теми же наборами параметров a, q 2 и p1и обладают определенной двойственной симметрией, позволяющей по одной части задачи востановить ей двойственную часть и наоборот.

Действительно, сравнивая между собой обе подзадачи, мы можем установить правила соответствия между ними. Эти правила состоят в замене

1) знака ограничений с ³ на £ ,

2) действия оптимизации функции стоимости c min на max ,

3) параметров ограничений на параметры функции стоимости c q 2на p1 ,

4) количественных переменных на им сопряженные ценовые: c q 1на p2 , и наоборот,

и позволяют по известной одной части задачи тут же написать ей двойственную.

Заметим , также, что "сопряженные" количественные q 1и ценовые p2 переменные обеих подзадач относительно количеств товаров имеют взаимно обратные количественные размерности штук и обратных штук товара:

[ q 1k ] = штуки и [ p2 l] = рубли / штуки,

и их балансовые соотношения взаимно обратны в том смысле, что в прямых - количества сырья преобразуются в количества изделия, а в двойственных - наоборот: цены изделий преобразуются в цены сырья:

q 2 = a q 1и p2 a = p1 .


5.Транспонирование. Соблюдаемое нами во взаимно двойственных подзадачах различение строчных и столбцовых векторов устраняется действием транспонирования. Транспонированием матрицы называется действие замены ее строк столбцами или, что то же самое,- столбцов строками, и обычно обозначается значком “t” сверху:

а t =

a1 1¼a1 m

¼¼¼

an1¼an m

t

º

a1 1¼an 1

¼¼¼

a1 m¼an m

.

В частности:

(q 1) t =

q 11

¼

q 1m

t

= ( q 11¼ q 1m) и (p1) t= ( p1 1¼ p1 m) t =

p1 1

¼

p1 m

.

Транспонирование произведения матриц доопределяется произведением транспонированных матриц, взятых в обратном порядке:

(a c )t = (c )t (a )t;

в частности:

( p2 a ) t = a t (p2) tи (a q 1) t = (q 1) t a t ,

а также

(áp1 , q 1ñ)t = á(q 1) t, (p1) tñ.

Теперь, двойственная часть задачи равновесного управления, полученная нами в строчных векторах p1и p2с умножением на матрицу a справа:

p2 : max áp2 , q 2ñпри p2 a £ p1 ,

в транспонированном виде записывается подобно своей прямой части

q 1 : min áp1 , q 1ñпри a q 1³ q 2

в столбцовых векторах (p1)t и (p2)t с умножением на транспонированную матрицу a t слева:

(p2 )t : max á(q 2)t, (p2)tñпри a t (p2) t£ (p1 )t.

1.3. Задача выпуска

1.Табличное представление. Задача выпуска является "обратной" по отношению к предыдущей задаче затрат задачей равновесного производственного управления. Процессом производства в ней является процесс сборки ряда взаимозаменяемых сложных изделий из нескольких видов простого сырья. Примерами задачи выпуска являются задачи оптимального планирования сборки изделий из нескольких видов комплектующих узлов, в частности:

- строительства из нескольких видов строительных материалов

- времени работы нескольких видов промышленного оборудования,

- времени работы рабочих нескольких специальностей,

и им подобные задачи.

При использовании m видов сырья для производства n видов изделий во всех задачах выпуска процесс производства описывается матрицей затратc, составляющие которой

ci j [количество i-сырья / на единицу j-изделия] ³ 0 ,

имеют обратные количественные размерности по отношению к количественным размерностям матрицы выпуска a : [ aj i] = количество j-изделий / на единицу i-сырья.

В условиях заданного вектора предложения сырья q 1 и заданных цен p2 на производимые изделия в количественной (прямой) части обратной задачи ищется наиболее доходное предложение (план производства) изделий q 2, а в ценовой (двойственной) части - наименее расходные цены p1 потребляемого сырья:

q 21¼q 2n

p1 1

¼

p1 m

c1 1¼c1 n

¼¼¼

cm1¼cm n

q 11

¼

q 1m

p21¼p2 n

Формальным отличием приведенной таблицы от таблицы предыдущей задачи является, как мы видим, замена сырьевых переменных "издельными" и наоборот.


2.Количественная часть задачи выпуска. В условиях затрат ci jединиц i-сырья на каждую единицу производимого j-изделия, на выпуск q 21 , ¼ , q 2n единиц изделий всех n видов потребуется q 11 , ¼ , q 1m :

q 11 = c1 1 q 21 + ¼ + c1 n q 2nºác1 , q 2ñ ;

. . .

q 1m = cm 1 q 21 + ¼ + cm n q 2nºácm , q 2ñ ,

единиц сырья каждого вида. n-мерные строки матрицы затрат, служащие коэффициентами балансовых соотношений:

c1 = ( c1 1¼ c1 n );

. . .

cm = ( cm 1¼ cm n ),

есть векторы затрат сырья каждого вида на весь ассортимент производимых из него изделий. Матричное представление полученных балансовых соотношений:

q 1 = q 1(q 2) = c q 2 ,

описывает линейный процесс пересчета предложения выпускаемых изделий в спрос на потребляемое для их производства сырье.

Допустимым является такое предложение изделий, при котором спрос на потребляемое сырье не превосходит его предложения:

q 1 = c q 2£ q 1.

Доход такого производства, выражаемый стоимостью M(q 2) продаваемых по ценам p2 предлагаемых количеств изделий:

M(q 2) = p2 1 q 21 + ¼ + p2 n q 2nºáp2 , q 2ñ,

называется функцией стоимости количественной части обратной задачи. Сама же задача состоит в том, чтобы на множестве ее допустимых планов производства найти план наибольшей стоимости:

q 2 : áp2 , q 2ñ= max á p2 , q 2ñ

q 2½c q 2£ q 1

.

В сущности, все задачи равновесного управления являются определениями равновесных значений своих искомых неизвестных.


3.Ценовая часть задачи выпуска. Одновременно, затраты на каждую единицу j-изделия ci jединиц сырья всех m видов по ценам p1 i: i=1, ¼ , m, сообщают выпускаемым изделиям цены p2 1 , ¼ , p2 n :

p2 1 = p1 1 c1 1 + ¼ + p1 m cm 1ºáp1 , d 1ñ ;

. . .

p2 n = p1 1 c1 n + ¼ + p1 m cm nºáp1 , d nñ .

m-мерные столбцовые векторы матрицы затрат:

d 1º

c1 1

¼

cm 1

, ¼ , d nº

c1 n

¼

cm n

,

есть векторы затрат сырья на выпуск изделия каждого вида. Ценовые балансовые соотношения