Следует учитывать также, что циклические способы очистки представляют собой сложное химическое производство и значительно дороже по капиталовложениям и эксплуатационным расходам нециклических вариантов.
Мокрый известняковый (известковый) способ. Этот нециклический процесс наиболее разработан и является самым распространенным на электростанциях США, Японии, ФРГ и др. Он обеспечивает очистку газов на 90% от SO2. В нашей стране известняковый способ реализован на агломерационной фабрике Магнитогорского металлургического комбината опытно-промышленных установках Северодонецкой и Губкинской ТЭЦ.
Метод основан на нейтрализации сернистой кислоты, получающейся в результате растворения диоксида серы наиболее дешевыми щелочными реагентами — гидратом оксида кальция (известью) или карбонатом кальция (известняком): В результате этих реакций получается сульфит кальция частично окисляющийся в сульфат CaSО4. В большинстве установок, построенных в 60-е и 70-е годы, продукты нейтрализации не использовались и направлялись в отвал. В последние годы этот способ усовершенствован: сульфит доокис-ляется до сульфата кальция и используется после соответствующей термической обработки в качестве строительного материала (гипса).
При всех мокрых способах очистки дымовых газов от оксидов серы температура уходящих газов понижается со 130 до 50° С. Подогрев обычно осуществляется газообразным топливом или теплотой неочищенных газов. Количество затрачиваемого топлива составляет около 3% топлива, расходуемого на котел.
Подогрев газов осуществляется для обеспечения рассеивания после выхода их из дымовой трубы.
Одним из сложных процессов при очистке дымовых газов «мокрыми» методами является эффективное улавливание брызг орошающего раствора из газов, выбрасываемых в атмосферу. Капли суспензии, орошающей скруббер и содержащей много взвешенных частиц, осаждаясь на поверхности элементов брызгоуловителей, образуют с течением времени отложения, увеличивающие гидравлическое сопротивление аппаратов и требующие периодической очистки. При всех мокрых способах очистки дымовых газов от оксидов серы температура уходящих газов понижается со 130 до 50° С. Подогрев обычно осуществляется газообразным топливом или теплотой неочищенных газов. Количество затрачиваемого топлива составляет около 3% топлива, расходуемого на котел. Подогрев газов осуществляется для обеспечения рассеивания после выхода их из дымовой трубы. Одним из сложных процессов при очистке дымовых газов «мокрыми» методами является эффективное улавливание брызг орошающего раствора из газов, выбрасываемых в атмосферу. Капли суспензии, орошающей скруббер и содержащей много взвешенных частиц, осаждаясь на поверхности элементов брызгоуловителей, образуют с течением времени отложения, увеличивающие гидравлическое сопротивление аппаратов и требующие периодической очистки.
В последние годы в ФРГ, Японии и других странах для борьбы с отложениями к реагентам, особенно на базе извести, применяют добавки, например небольшое количество карбоновой кислоты. Эти добавки позволяют получать не суспензию, а прозрачный раствор извести. В результате удается избежать основной трудности при эксплуатации известковых Установок, заключающейся в значительных твердых отложениях на стенках скруббера.
Мокро-сухой способ. Этот нециклический способ нашел Широкое распространение в странах Западной Европы и США главным образом при сжигании углей с содержанием серы от 0,5 до 1,5%. В основе метода—поглощение диоксида серы Дымовых газов испаряющимися каплями известкового Раствора. Эффективность сероулавливания более 90%.
Преимуществами мокро-сухого способа очистки дымовых газов от SO2 являются: получение продукта в сухом виде, отсутствие сточных вод, высокая (~1) степень использования реагента, умеренное аэродинамическое сопротивление системы. Недостаток этого способа заключается в отказе от использования дешевого известняка и применение высококачественной извести.
Магнезитовый циклический способ наиболее подробно изучен. Способ испытан на опытно-промышленной установке Северодонецкой ТЭЦ. Любой циклический способ несоизмерим по громоздкости с нециклическими вариантами.
Сущность этого способа заключается в связывании диоксида серы суспензией оксида магния по реакции
MgO + SO2 = MgSO3.
Сульфит магния взаимодействует с диоксидом серы, образуя бисульфит магния:
MgS03 + S02 + H20 = Mg(HS03)2.
Бисульфит магния нейтрализуется добавлением магнезита:
Mg(HSO3)2 + MgO = 2MgS03 + H2O.
Образовавшийся сульфит магния в процессе обжига при температуре 800—900°С. подвергается термическому разложению с образованием исходных продуктов по реакции
MgSO3 = MgO + SO2.
Оксид магния возвращается в процесс, а концентрированный диоксид серы может быть переработан в серную кислоту или элементарную серу.
Дымовые газы очищаются от оксидов серы до концентрации 0,03% в скруббере, а образовавшийся раствор бисульфита магния с концентрацией 50—70 г/л поступает в циркуляционный сборник, откуда часть раствора подается в напорный бак и возвращается на орошение скруббера, а другая часть — в нейтрализатор для выделения сульфита магния.
Основными недостатками магнезитового циклического способа являются наличие сернокислотного производства и многочисленных операций с твердыми веществами (кристаллами сульфита, золы, оксида магния), что связано с износом оборудования и запылением.
Аммиачно-циклический способ основан на обратимой реакции, протекающей между растворенным сульфитом и бисульфитом аммония и диоксидом серы, поглощенной из дымовых газов:
(NH4)2S03 + SO2 + H20±2NH4HS03.
При температуре 30—35°С. эта реакция протекает слева направо, а при кипячении раствора — в обратном направлении.
Аммиачно-циклический способ позволяет получать сжиженный 100%-ный сернистый ангидрид и сульфат аммония — химические продукты, необходимые народному хозяйству. По этому способу /построена опытно-промышленная установка на Дорогобужской ГРЭС.
Озонный способ одновременной очистки дымовых газов от оксидов серы и азота. Все рассмотренные выше способы позволяют очищать дымовые газы ТЭС только от диоксида серы, а также от хлористых и фтористых соединений. Что же касается оксидов азота, присутствующих в дымовых газах на 90—95% в виде монооксида, то они улавливаются в незначительном количестве. Это объясняется тем, что реакционная способность оксида азота на три порядка меньше по сравнению с реакционной способностью диоксида серы. Озонный способ позволяет производить окисление озоном низших оксидов азота и отчасти серы с последующим связыванием аммиаком. Этот метод разработан в СССР и испытан на Молдавской ГРЭС. За рубежом используется в ФРГ и Японии.
Основные недостатки озонного метода: высокая энергоемкость производства озона, достигающая 6—10% мощности энергоблока и коррозионная агрессивность смеси серной и азотной кислот.
Сухой известняковый (аддитивный) способ является наиболее простым и требует наименьших капиталовложений.
Сущность способа заключается в добавлении к сжигаемому топливу известняка или доломита в количестве, примерно в 2 раза превышающем стехиометрическое содержание серы в исходном топливе.
В большинстве случаев в горелки подавалась смесь угольной пыли с молотым известняком. В топке при горении угольной пыли известняк – углекислый кальций – диссоциирует на углекислоту и оксид кальция, а последний, двигаясь совместно с продуктами сгорания по газоходам котла, взаимодействует с серным и сернистым ангидридом, образуя сульфит и сульфат кальция. Сульфат и сульфит кальция вместе с золой улавливаются в золоуловителях. Свободный оксид кальция, содержащийся в золе топлива, также связывает оксиды серы. Основным недостатком этого способа очистки газов является образование прочных отложений золы и сульфата кальция на поверхностях нагрева в области температур 700—1000° С.
Подводя итог рассмотрению различных, по сути химических способов очистки дымовых газов ТЭС от диоксида серы, следует отметить, что капиталовложения в нециклические способы очистки составляют около 10—15%, в циклические — 30—40% стоимости энергоблока.
Мокрые золоуловители также могут использоваться для Улавливания диоксида серы.
Циклические методы могут быть рентабельными при содержании серы в топливе свыше 3,5—4%. В остальных случаях экономически целесообразно применять мокрый известняковый или мокро-сухой известковый метод. Дальнейшее развитие и совершенствование методов очистки дымовых газов ТЭС от оксидов серы направлено на достижение безотходной технологии.
16. ЭКОНОМИЧЕСКАЯ ЧАСТЬ16.1.Энергетические показатели работы станции16.1.1 Годовая выработка электроэнергии ГРЭСГодовая выработка электроэнергии ГРЭС подсчитывается по формуле:Wв=Nу×hу [МВт·ч]Где:Nу – установленная мощность электростанции, Nу=3200 [МВт]hу – годовое число часов использования установленной мощности задаётся в исходных условиях. hу=6000 [ч].Wв=3200×6000=19200000[МВт·ч]16.1.2 Годовой расход электроэнергии на собственные нуждыГодовой расход электроэнергии на собственные нужды определяется на основании энергетической характеристики, в зависимости от мощности и вида сжигаемого топлива.Wcн.= [МВт·ч]Где: - количество установленных блоков =4 - число часов работы блока в течении года =8000 чWв - годовая выработка электроэнергии [МВт·ч]Wсн.=6,9×4×8000+0,13×19200000=2716800[МВт·ч]16.1.3 Годовой отпуск электроэнергии с шин электростанцииГодовой отпуск электроэнергии с шин электростанции определяется:Wотп.=Wв-Wсн. [МВт·ч]Где:Wв - годовая выработка электроэнергии [МВт·ч]Wсн. - годовой расход электроэнергии на собственные нужды [МВт·ч]Wотп.=19200000-2716800=16483200 [МВт·ч]16.2 Годовой расход условного топливаГодовой расход условного топлива энергетическими котлами определяется по топливным характеристикам и рассчитывается по формуле:Ву=bхх×nбл×Тр+b×Wв [т.у.т.] | |||||||||||||
Лист | |||||||||||||
изм | Лист | N документа | Подп | Дата | |||||||||
Где:bхх – часовой расход условного топлива на холостой ход энергоблока bхх=19,7[т/ч]b - средний относительный прирост расхода условного топливаb=0,278 [т/МВт·ч]Ву=19,7×4×8000+0,278×2716800 = 1385670,4 [т.у.т.]16.3 Годовой расход натурального топливаГодовой расход натурального топлива рассчитывается по формуле: [т.т/год]Где: - удельная теплота сгорания натурального топлива [ ] =35130[ ] =1385670,4 × =11570130,9 [т.т/год]16.4 Удельный расход условного топлива Где: - годовой расход условного топлива котлами [т.у.т./год]Wотп. – годовой отпуск электроэнергии с шин электростанции [МВт·ч] [г.у.т./кВт·ч] | |||||||||||||
Лист | |||||||||||||
изм | Лист | N документа | Подп | Дата | |||||||||
13. СХЕМА И ОПИСАНИЕ ПРИНЯТОЙ КОМПОНОВКИ ОСНОВНОГО ОБОРУДОВАНИЯ В ГЛАВНОМ КОРПУСЕ ТЭС.Компоновка – это взаимное расположение в главном корпусе станции оборудования и строительных конструкций.На современных станциях применяют главным образом закрытую компоновку с размещением оборудования в котельном, деаэраторном, при работе на угле – бункерном и машинном отделении. Эти отделения расположены параллельно, сомкнуто и образуют единый главный корпус.Основные требования к компоновке.- Надежность- Безопасность- Удобная эксплуатацияа) возможность ремонта оборудованияб) удобство монтажав) механизация основных работ- Соблюдение санитарно-гигиенических и противопожарных требований- Соблюдение правил техники безопасности- Экономичность- Удобство расширения ТЭСДля строительства главного корпуса используют железобетонные и металлические каркасы. Каркас состоит из колонн, опирающихся на фундамент, ригелей и ферм. Фундаменты бывают монолитные или сборные.Расстояние между осями колоннами главного корпуса в продольном направлении называется шагом. Шаг равен от 6 до 12 метров.Расстояние между осями колоннами главного корпуса в поперечном направлении называется пролетом. Общий пролет составляется из:Однопролетного машинного зала - 28-54 метра,Деаэраторного отделения -7,5-15 метров,Бункерного отделения (при работе на угле) - 8-15 метров,Котельного отделения - 22-46 метров. | |||||||||||||
ДП 1005 495 ПЗ | Лист | ||||||||||||
изм | Лист | N документа | Подп | Дата | |||||||||
Компоновка машинного отделения.По отделению и в районе турбоагрегата устанавливаются площадки обслуживания. Отметка площадки обслуживания составляет от 7 до 15,5 метров. Для обслуживания вспомогательного оборудования предусматривают промежуточные площадки.На 0 отметке машинного зала размещают:- Конденсаторы.- Питательные насосы.- Конденсатные насосы.- Дренажные насосы.- Прочие насосы.Циркуляционные насосы тоже устанавливают в конденсатном помещении, если уровень воды в источнике водоснабжения колеблется в небольших пределах и не требует значительно заглублять насосы.Ниже 0 отметки возможно устройство подвала глубиной 3-4 метра, в котором размещают конденсатные насосы и трубопроводы циркуляционной воды.Турбина и электрогенератор устанавливают на собственных фундаментах, которые не связаны с другими с другими строительными конструкциями, чтобы вибрации турбоагрегата не передались им.В турбинном отделении имеется один или два мостовых крана, для монтажа и ремонта. Грузоподъемность кранов принимается из условий подъема статора турбины и генератора.Габариты турбинного отделения выбирается достаточным для свободной выемки роторов турбины и генератора, трубок конденсатора, трубных систем подогревателей.Отметка низа фермы здания машинного зала составляет 21-35 метров от пола, чтобы свободно поднять крышку ЦНД или поднять ПВД.Турбоустановку компонуют продольно или поперечно относительно основного машинного отделения.При поперечной компоновке турбины по сравнению с продольной сокращается длина паропроводов от котла к турбине. Система этих паропроводов симметрична относительно основной турбины. Конденсаторы располагают под фундаментом турбины, поперек или вдоль ее оси.При продольно-расположенном конденсаторе меньшее количество циркуляционных водоводов, что сокращает площадь машинного отделения.Возможно применение боковых конденсаторов размещенных по обе стороны турбины. Пар в такие конденсаторы поступает через патрубки, расположенные под фундаментом турбины. Боковые конденсаторы увеличивают площадь турбинного отделения, но уменьшает отметку обслуживания турбинной установки. | |||||||||||||
ДП 1005 495 ПЗ | Лист | ||||||||||||
изм | Лист | N документа | Подп | Дата | |||||||||
Регенеративные подогреватели устанавливаются на металлическом каркасе по бокам турбины.Сетевые подогреватели устанавливаются так, чтобы было удобно трассировать теплопроводы.В турбинном отделении со стороны постоянного и временных торцов предусматривается ремонтно-монтажные площадки, куда есть железнодорожный въезд. Для ТЭЦ допускается въезд железнодорожного транспорта только со стороны временного торца.Компоновка оборудования деаэраторного отделения.На верхнем этаже отделения устанавливается деаэраторы питательной воды (21 отметка). Один этаж занят паропроводами, РОУ и БРОУ. Ниже расположен блочный щит управления (8-12 отметка) и устройство РУСН.Компоновка оборудования котельного отделения.Котел располагается, как правило, фронтом параллельно машинному залу. В котельном отделении также предусматривают железнодорожный въезд. Оборудование газовоздушного тракта обычно размещают вне главного корпуса. Открытая установка вентилятора и дымососа применяется на газомазутных ТЭС во всех климатических районах.РВП всегда устанавливается на открытом воздухе. | |||||||||||||
ДП 1005 495 ПЗ | Лист | ||||||||||||
изм | Лист | N документа | Подп | Дата |
17. Специальное задание. Центровка турбины по муфтам. Цель центровки турбоагрегатов - обеспечение правильного взаимного расположения роторов и совпадения геометрических осей роторов с осями своих подшипников и цилиндров; центровка является одним из необходимых условий спокойной работы турбоагрегата.Неправильная и небрежная центровка может вызвать в эксплуатации ряд осложнений, а именно: сильную вибрацию турбоагрегата, задевания в лабиринтовых уплотнениях, неправильную работу соединительных муфт, износ подшипников, червячной передачи регулятора и т. д. Некачественная центровка не дает возможности пустить отремонтированную турбину в эксплуатацию и может вызвать необходимость ее повторного вскрытия, чтобы произвести надлежащую центровку с устранением обнаруженных дефектов. Вибрация турбоагрегата, вызванная неправильной центровкой, в большинстве случаев напоминает вибрацию при небалансе роторов. Она имеет частоту, соответствующую числу оборотов агрегата, и не может быть устранена балансировкой.ЦЕНТРОВКА РОТОРОВ ПО МУФТАМРотор турбоагрегата, свободно установленный на подшипники, под действием собственного веса получает определенный статический прогиб; поэтому его ось представляет собой не прямую, а кривую линию, что может быть проверено точным уровнем, установленным на шейках ротора. При горизонтальном положении ротора, т. е. при положении, когда центры шеек ротора находятся на одной горизонтальной оси, уклоны обеих его шеек зависят от стрелы прогиба ротора; при равномерном распределении веса ротора по длине эти уклоны одинаковы по величине и направлены в противоположные стороны; неодинаковыми эти уклоны могут быть при неравномерном распределении веса по длине ротора.Во время вращения каждый ротор всегда сохраняет свой естественный статический изгиб независимо от числа оборотов, за исключением периодов перехода через критическое число оборотов. Если уклоны обеих шеек каждого ротора одинаковы по величине и противоположны по направлению («симметричное» положение), а оси всех вкладышей подшипников находятся на одной горизонтальной линии, такую центровку нельзя считать правильной; полумуфты роторов будут при этом не параллельны и неконцентричны одна другой по окружности, что вызовет неспокойный ход турбины вследствие появления в роторах и муфтах добавочных напряжений. | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
Правильной центровкой роторов по муфтам является центровка, при которой в рабочих условиях торцевые плоскости подлежащих соединению муфт между собой будут параллельны и концентричны, благодаря чему оси роторов в вертикальной и горизонтальной плоскостях совпадают, а уклоны по уровню смежных с муфтами шеек роторов одинаковы. При этих условиях линия статического изгиба последовательно соединяемых роторов будет представлять плавную непрерывную кривую.Для обеспечения такой центровки оси расточки всех цилиндров и подшипников в вертикальной плоскости, включая ось статора генератора, должны располагаться так, чтобы в рабочих условиях они находились на естественной упругой линии, соответствующей статическому прогибу составного вала; такое положение достигается при монтаже установкой цилиндров и корпусов подшипников на фундаментных рамах с соответствующим уклоном; величина уклонов зависит не только от стрел прогиба роторов, но и от базы центровки, относительно которой ведется сборка турбоагрегата. Базой центровки обычно является или горизонтально расположенный ЦНД или корпус подшипника ЦНД со стороны генератора; при этом естественно крайние подшипники турбоагрегата (первый у турбины и последний у генератора) устанавливаются выше, чем промежуточные.Для трехцилиндровых турбин центровка производится с «симметричным» положением ротора низкого давления, когда базой центровки является горизонтально расположенный ЦНД, или с горизонтальным положением шейки ротора ЦНД со стороны генератора, когда базой центровки является корпус подшипника ЦНД со стороны генератора.Центровка должна обязательно производиться при полностью остывших роторах и цилиндрах турбины, при собранных упорных подшипниках и разъединенных роторах, когда каждый из них может вращаться независимо один от другого. Проверка при горячем состоянии приведет к искажению полученных результатов, так как за время разборки крышки муфты и в процессе замеров горячие роторы горячие роторы получают упругий прогиб. Разница в аксиальных зазорах, замеренных на противоположных сторонах полумуфт, показывает непараллельность торцов муфт и, следовательно, наклон оси одного вала по отношению к другому (величину излома). Разница в радиальных зазорах показывает величину смещения осей роторов в вертикальной и горизонтальной плоскостях, при которой окружности полумуфт не концентричны, а следовательно, ось одного вала не является продолжением оси другого вала. | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
Проверка центровки по муфтам производится с помощью специальных скоб с указательными винтами, которые позволяют производить замеры аксиальных и радиальных отклонений осей роторов. Скобы укрепляются на болтах, ввертываемых в специально предусмотренные отверстия в полумуфтах; если этих отверстий нет, их следует просверлить и нарезать. По окончании центровки и снятии скоб в отверстия следует завернуть пробки с прорезью под отвертку для сохранения баланса полумуфт; если же отверстия просверлены на двух взаимно противоположных сторонах полумуфт, то пробок можно не ставить.Скобы следует изготовлять достаточно жесткими и закреплять на полумуфтах прочно, без слабины; это необходимо во избежание отжатия скобы во время замеров, когда между ней и полумуфтой просовываются пластинки щупа; концы указательных винтов должны быть закруглены. Отжатие скобы и отсутствие закругления винтов приводят к существенным ошибкам в центровке; в достаточной жесткости скоб и закреплении их без слабины нетрудно убедиться, если после плавного отжатия от руки свободного конца скобы от муфты и такого же прижатия измеряемый зазор возвращается к первоначальному. Конструкции скоб для измерения щупом при центровке роторов. а - с полужесткими муфтами; б -с пружинными муфтами; в-с кулачковыми муфтами; 1 - радиальные и 2 - осевые замеры. Рис. 17.1 | |||||||
ДП 1005 495 ПЗ | Лист | ||||||
изм | Лист | N документа | Подп | Дата | |||
Скобы следует привертывать так, чтобы получаемые аксиальные и радиальные зазоры (расстояние от указателя скобы до поверхности муфты или между двумя указателями, укрепленными на разных полумуфтах) не превышали 0,4-0,5 мм. Благодаря этому при центровке можно пользоваться наименьшим количеством пластинок щупа, что повышает точность замеров и облегчает подсчет получаемых зазоров. Измерительные скобы необходимо укреплять на полумуфтах двух смежных роторов, подлежащих центровке, при их рабочем взаимном положении; благодаря этому повороты роторов и замеры центровок при всех проверках могут быть проведены по меткам на муфтах в их рабочем положении и поэтому дадут сравнимые результаты. Кроме того, необходимо постоянно сохранять одно и то же расположение скоб на полумуфтах, что должно быть зафиксировано с формуляре центровки.Центровать путем проворачивания одного ротора не рекомендуется, несмотря на то, что на муфтах обычно протачиваются заводом-изготовителем специальные пояски по окружности и по торцам полумуфт, служащие для получения правильных результатов в случае перекоса в насадке муфты или неточности ее обработки. Эти неправильности не отражаются на результатах центровки, если проворачиваются оба ротора одновременно на один и тот же угол; промеры по скобам при этом производятся всегда при одном и том же взаимном положении полу муфт обоих роторов. Одновременность поворота роторов обеспечивается вставкой, взамен вынутых из фланцев полумуфт соединительных болтов, одной-двух длинных гладких шпилек диаметром, на 0,2-0,3 ммменьше диаметра отверстия. Роторы при центровке проворачивают краном только по направлению рабочего вращения путем петлевого обхвата ротора тросом. После провертывания роторов трос должен быть ослаблен, проверено отсутствие заклинивания в полумуфтах (жесткие полумуфты не должны касаться одна, другой, а при подвижных муфтах должна быть обеспечена свобода перемещения полумуфт в осевом направлении) и свободное положение в отверстиях шпилек, вставленных взамен соединительных болтов.При проворачивании аксиальное передвижение роторов в пределах разбега в упорном подшипнике может приводить к неправильным замерам по торцам полумуфт; влияние осевой игры роторов на производимые замеры может быть учтено при контроле по индикатору, указательный штифт которого прижат к какой-либо торцевой точке вращаемого ротора. Однако такой контроль и связанные с этим подсчеты вызывают затруднения при центровке. Для исключения ошибок, связанных с перемещением какого-либо из валов в аксиальном направлении при их вращении, следует привертывать к полумуфтам две скобы, расположенные на диаметрально противоположных точках окружности полумуфт. | |||||||
ДП 1005 495 ПЗ | Лист | ||||||
изм | Лист | N документа | Подп | Дата |
Такая установка скоб для центровки двух валов А и В, соединенных кулачковой муфтой, приведена на рис. 17.1 - в. Для удобства центровки роторов с кулачковыми муфтами со звездочек обеих центрируемых роторов обычно снимаются полумуфты (коронки), хотя эти и некоторые другие подвижные муфты позволяют производить центровку, не разъединяя их. На кулачки звездочек привертываются жесткие стальные скобы, дающие возможность измерять радиальный и аксиальный зазоры между двумя полумуфтами. К диаметрально противоположным кулачкам звездочек обоих валов привертываются другие скобы, также дающие возможность проверять радиальный и осевой зазоры. Замеры проводятся при одновременном поворачивании обоих роторов на 90, 180, 270 и 360°, т. е. каждый раз поворачивая роторы на 90° по отношению к предыдущему положению, пока не будет пройден полный оборот. При каждом из этих положений с помощью щупа замеряются аксиальные и радиальные зазоры; замеры при повороте на 360° должны совпадать с величинами, полученными при нулевом положении роторов; эти замеры являются контрольными. Пластины щупа следует подбирать так, чтобы плотно сжатыми пластинами чувствовалось касание как муфты, так и измерительной скобы. При отсутствии возможности, из-за конструктивных особенностей непосредственно замерять нижние радиальный и аксиальный зазоры; эти зазоры определяются расчетным путем, как разность между суммой боковых зазоров и соответствующим верхним зазором. При правильном положении роторов все радиальные и аксиальные замеры зазоров по скобам полумуфт, производимые в холодном состоянии турбины щупом или индикатором с точностью до 0,01 мм, при одновременном повертывании роторов в любое положение на одинаковый угол, должны быть одинаковыми или во всяком случае расцентровка роторов турбин на 3000 об/мин не должна превышать: для жестких муфт 0,03— 0,04 мм, для полужестких и пружинных муфт 0,05—0,06 мм и для кулачковых муфт 0,08 мм. Замеры, производимые при центровке, принято записывать в формуляр. При анализе результатов измерений, произведенных в холодном состоянии турбины, необходимо учитывать те изменения в положении роторов, которые произойдут в процессе работытурбоагрегата;положение линии роторов горячей турбины значительно отличается от положения ее в холодном состоянии. | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
Эти изменения вызываются:1) всплыванием опорных шеек ротора на масляной пленке, образующейся во время работы во вкладышах подшипников. Всплывание вызывает различный подъем на масляной пленке при разнице в диаметрах соединяемых валов; при этом происходит смещение ротора не только в вертикальной, но и в горизонтальной плоскости: влево при вращении ротора по часовой стрелке и вправо — против часовой стрелки. Величина такого смещения, которое должно учитываться особенно при центровке по расточкам концевых уплотнений, увеличивается: при уменьшении удельной нагрузки на вкладыши, при увеличении окружной скорости, при повышении вязкости масла, при понижении температуры масла на выходе из подшипников; эта величина доходит до 0,1 — 0,3 мм в зависимости от формы расточки вкладыша и может быть определена соответствующим расчетом;2) тепловыми деформациями корпуса турбины и неравномерным тепловым расширением фундамента турбины и корпусов подшипников вследствие их неодинаковых температур нагрева при работе турбоагрегата. Особенно на центровке сказывается неравномерность прогревафундамента, так как вследствие больших размеровфундамента и почти одинаковых коэффициентов линейного расширения у железобетона и стали даже небольшие температурные разности по фундаменту приводят к заметному изменению центровки. По данным одного из исследований при прогреве фундамента конкретной турбинной установки был замерен подъем фундаментной плиты под передним стулом подшипника почти па 1,5 мм, в то время, как под возбудителем подъема почти не было обнаружено; установившейся температуры фундамент достиг через 19 дней работы турбоагрегата, при этом разность температур в указанных двух крайних точках фундамента достигала 45° С.Должен также учитываться высокий неодинаковый нагрев корпусов подшипников, жестко соединенных с цилиндром турбины, вследствие чего вкладыши подшипников перемещаются по вертикали на разную высоту. Поправки на вертикальное температурное расширение корпусов подшипников могут быть определены по формуле Для чугунных корпусов подшипников величина их вертикального линейного расширения ( ) при разности температур ( ) в 100° С может быть принята в 1,04 мм на 1 м высоты (H); | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
3) влиянием вакуума в конденсаторе, котороевызывает опускание выхлопных патрубков цилиндра низкого давления и корпусов крайних подшипников, отлитых с ними за одно целое, а также влиянием веса воды, заполняющей конденсатор, если он жестко связанс выхлопными патрубками ЦНД. Поправка на опускание выхлопной части ЦНД может быть определена 'Непосредственными измерениями путем закрепления скобы с индикатором сверху на полумуфте генератора, при этом ножка индикатора должна касаться полумуфты ЦНД; измерения производятся при полностью собранном турбоагрегате (полумуфты разъединены) в двух состояниях: при холодной турбоустановке и привакууме после пуска эжекторов без подачи парана лабиринтовые уплотнения. На основании этих двух измерений путем пересчета на нормальный вакуум можно определить поправку на центровку при рабочем вакууме турбины.Эти практические обстоятельства, вызывающие изменения в центровке при переходе к рабочим условиям, должны учитываться по заводским данным, по данным монтажных формуляров и на основании специальных исследований турбоагрегата. Полученные поправкии величины смещения для каждого подшипника складываются алгебраически; при этом не учитываются только поправки, величина которых не превышает 0,03-0,04 мм. При всех условиях должна устанавливаться в холодном состоянии только такаярасцентровка, которая действует в благоприятную сторону и при рабочих условиях сводится к нулю.Необходимость определять указанные поправки прикаждом капитальном ремонте должна быть исключена записью в формуляре агрегата правильного положения роторов в холодном состоянии с учетом этих поправок.Таким образом, если учитывать указанные соображения по переходу к рабочим условиям, разница в осевых и радиальных зазорах, замеренных при центровке, превышает допустимые величины, необходимо выправить положение валов, так как это указывает на ненормальность положения торцевых поверхностей полумуфт (излом осей) и на несовпадение центров полумуфт.Выправление положения валов производится путем перемещения вкладышей и корпусов соответствующих подшипников как в вертикальной, так и в горизонтальной плоскости; при этом в связи с тем, что перемещения вкладышей и корпусов подшипников для изменения положения осей роторов вызывают изменения зазоров в лабиринтовых уплотнениях, эти перемещения могут производиться лишь в самых ограниченных пределах, определяемых допустимыми изменениями зазоров в уплотнениях. | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
При обнаружении расцентровки, прежде чем менять подкладки у подшипников или производить их передвижку для изменения положения роторов, необходимо по результатам центровки произвести подсчеты требующихся подкладок и передвижек с тем, чтобы избежать ошибок и излишних операций и тем самым ускорить очень трудоемкую работу по проверке и исправлению центровки.При центровке турбоагрегата, имеющего несколько роторов, нельзя решать вопрос исправления центровки по замерам, произведенным на одной муфте; для этого нужно иметь данные по центровке всех муфт агрегата и по расположению всех роторов в расточках уплотнений. Эти данные и полученные величины замеров достаточны для определения необходимых перемещений подшипников в вертикальной и горизонтальной плоскостях. Опорный подшипник центрируется в расточке корпуса на четырех опорных подушках; эти подушки привертываются к вкладышу подшипника винтами. Наружная поверхность подушек обточена концентрично с расточкой вкладыша. Правильная радиальная установка вкладышей достигается подбором сменных прокладок, закладываемых под подушки.Подъем вкладыша в вертикальной плоскости производится путем подкладывания прокладки из калиброванной листовой стали соответствующей толщины под нижнюю опорную подушку вкладыша при одновременном уменьшении на такую же величину толщины прокладки под верхней опорной подушкой. Точно также для перемещения вкладыша в горизонтальной плоскости следует вынуть с одной стороны вкладыша из-под опорной подушки прокладку соответствующей толщины и переложить ее под опорную подушку с другой стороны вкладыша.При установке прокладок следует учитывать угол расположения боковых подушек а на вкладыше. Так, например, если ротор надо поднять по высоте на величину А, то необходимо под нижнюю подушку положить прокладку толщиной А и уменьшить на толщину А прокладку под верхней подушкой подшипника; кроме того, под каждую нижнюю боковую подушку необходимо положить прокладку толщиной А , Точно также при необходимости перемещения ротора в горизонтальной плоскости на величину Б надо под одну боковую подушку положить подкладку толщиной Б , а под другой боковой подушкой уменьшить толщину подкладки на Б .При необходимости одновременного перемещения ротора в вертикальной и горизонтальной плоскостях изменение толщины прокладок определяется алгебраической суммой толщин, полученных расчетом измерений.Убедившись в правильности произведенной центровки по муфтам и в том, что после установки необходимых прокладок центровка по расточкам также будет в пределах допусков, опорные подушки после их снятия и изменения толщины прокладок должны быть плотно пригнаны к расточке корпуса подшипника | ||||||
ДП 1005 495 ПЗ | Лист | |||||
изм | Лист | N документа | Подп | Дата |
Опорный подшипник турбины |
.