Насыщаемость железа молекулярным азотом при атмосферном давлении и температуре до 1500 0С невелика, однако ее можно увеличить, создав в печи высокое давление (несколько сот атмосфер). Но этот способ насыщения железа азотом пока не представляет практического интереса ввиду его трудоемкости.
Для насыщения целесообразнее использовать атомарный азот, образующийся в момент разложения соединений, содержащих этот элемент. В качестве такого соединения обычно применяют аммиак, диссоциация которого сопровождается выделением азота в атомарном активном состоянии, который, однако, вскоре переходит в молекулярное состояние и теряет свою активность:
2NH3 = 2N + 6H
2N N2 6H 3H2.Поэтому азотирование интенсивно протекает лишь в том случае, когда диссоциация аммиака происходит в непосредственной близости от азотируемой поверхности.
Стали для азотирования.
Все шире применяется азотирование аустенитных и нержавеющих теплостойких сталей.
Аустенитная сталь, как известно, имеет низкую износостойкость, но в то же время обладает рядом ценных свойств: парамагнитностью, высокой жаропрочностью, окалиностойкостью, коррозийной стойкостью и высокой ударной вязкостью при температуре ниже 0 0С.
Азотирование - наиболее эффективный способ повышения износостойкости аустенитных нержавеющих сталей.
В ряде зарубежных работ освещены результаты исследований сталей, содержащих титан. Эти стали азотируются быстрее, чем хромомолибденоаллюминиевая, и отличаются более высокой поверхностной твердостью и красностойкостью.
Разработана сталь, содержащая 18% Ni, насыщение азотом при 425-455 0С в течение 20 ч приводит к превращению в поверхностном слое феррита в аустенит, а последний, при охлаждении на воздухе превращается в мартенсит.
Рекомендовано подвергать азотированию (взамен цианирования) инструмент из быстрорежущих сталей Р9 и Р18.
Азотированию подвергают также детали из высокопрочного магниевого чугуна (в частности, коленчатые валы тепловоза и детали из специальных чугунов, легированных алюминием).
Свойства азотированной легированной стали.
Азотированный слой обладает высокой твердостью и износостойкостью. Износостойкость азотированной стали в 1,5-4 раза выше износостойкости закаленных высокоуглеродистых, цементованных, а также цианированных и нитроцементованных сталей.
Азотирование снижает вязкость стали, повышает ее прочность, ослабляет влияние концентраторов напряжений на снижение предела выносливости стали и существенно повышает предел выносливости, особенно тонких деталей и деталей, работающих в некоторых коррозионных средах.
Азотирование повышает сопротивление задираемости и налипанию металла под нагрузкой и особенно при повышенных температурах.
Азотированная сталь обладает теплостойкостью (красностойкостью), и ее твердость сохраняется после воздействия высоких температур. Например, сталь 38ХМЮА сохраняет свою твердость при нагреве до 500-520 0С в течение нескольких десятков часов. Еще большую устойчивость твердости против воздействия температур (до 600 0С) имеет аустенитная сталь. Однако при длительной эксплуатации в условиях высоких температур азотированный слой постепенно рассасывается, на поверхности образуются окислы и происходит глубокая диффузия кислорода по нитридным прожилкам, образующимся как в процессе азотирования, так и при длительном нагреве во время эксплуатации.
В результате азотирования коррозионная стойкость конструкционной стали (в среде воздуха, водопроводной воде, перегретом паре, слабых щелочных растворах) повышается и, наоборот, аустенитной хромоникелевой и нержавеющей хромистой стали некоторых марок понижается. Окалиностойкость последних сталей также понижается. Это объясняется тем, что в азотированном слое этих сталей из твердого раствора устраняется значительная часть хрома, входящего в состав образующихся нитридов. В аустенитной стали некоторых составов, например с малым содержанием никеля, это может сопровождаться даже выпадением в азотированном слое a-фазы, в результате чего поверхностный слой становится слегка магнитным.
Азотированная сталь обладает высокой эрозионной стойкостью в потоках горячей воды и водяного пара.
Цианирование.
Для цианирования на небольшую глубину используют ванны составом:
№1NaCN 20-25%, NaCl 25-50%, Na2CO3 25-50%, температура цианирования 840-870 0С, продолжительность процесса - 1ч.
№2 цианплав ГИПХ 9%, NaCl 36%? CaCl2 55%.
Реакции идущие в ванне №1:
2NaCN + O2 = 2NaCNO
2NaCNO + o2 = Na2CO3 + 2N + CO.
реакции идущие в ванне №2:
Ca(CN)2 = CaCN2 + C
CaCN2 + O2 = CaO + CO + 2N
2Ca(CN)2 + 3O2 = 2CaO + 4CO + 4N.
После цианирования непосредственно из ванны производится закалка.
Структура нитроцементованного и цианированного слоя.
При цианировании при 850-900 0С в цианистых ваннах, содержащих цианплав, и при глубоком цианировании при 900-950 0С в низкопроцентных ваннах с цианистым натрием и хлористым барием сталь с поверхности насыщается углеродом примерно до той же концентрации, что и при цементации, и лишь немного азотом. При цианировании в ванне №1 сталь насыщается углеродом несколько меньше, чем при цементации, а азотом в поверхностной зоне слоя больше, чем в других ваннах.
Низкотемпературная нитроцементация и цианирование.
Низкотемпературной нитроцементации и цианированию при 560-700 0С подвергаются стали различного назначения для повышения их поверхностной твердости, износостойкости, предела выносливости, теплостойкости и противозадирных свойств. Обычно такая обработка проводится при 560-580 0С, т. е. при температуре, которая немного ниже минимальной температуры существования g-фазы в системе Fe - N. Поэтому в процессе обработки при такой температуре на стали образуется, по существу, азотированный слой, а углерод проникает на глубину лишь нескольких микрон, где может образовываться тонкая карбонитридная зона.
Свойства нитроцементованной и цианированной стали.
Нитроцементованная и цианированная конструкционная сталь благодаря присутствию азота более износостойка, чем цементованная.
Нитроцементация и цианирование существенно повышают предел выносливости, причем нитроцементация в большей степени, чем цианирование, а в ряде случаев в большей степени, чем цементация.
При цианировании невозможно регулировать концентрацию азота и углерода в слое. Поэтому в цианированном слое количество остаточного аустенита всегда больше, чем в нитроцементованном.
В связи с этим сжимающие напряжения создаются в цианированном слое лишь на некотором расстоянии от поверхности, что приводит к снижению предела выносливости стали. Этим и объясняется меньшая долговечность цианированных деталей по сравнению с нитроцементованными.
При цианировании необходимо производить наклеп деталей дробью, создающий на поверхности (вследствие превращения остаточного аустенита в мартенсит) высокие напряжения сжатия. Усталостные испытания зубьев цианированных зубчатых колес на изгиб с циклической нагрузкой показали, что наклеп дробью повышает предел выносливости с 43 до 72 кГ/мм2.
Испытания на стенде показали, что после наклепа дробью стойкость (до разрушения) цианированных зубчатых колес увеличилась с 9 до 140 ч.
Сталь, подвергнутая нитроцементации и имеющая на поверхности тонкий нетравящийся карбонитридный слой (что бывает не всегда), корродирует медленнее нецианированной стали. Например, в 3%-ном растворе поваренной соли стойкость такой стали против коррозии в 2 раза выше, чем нецианированной. Коррозионная стойкость нержавеющих сталей после нитроцементации и цианирования снижается.
Использованная литература:
А. Н. Минкевич.
"Химико-термическая обработка металлов и сплавов"
Издательство "Машиностроение"
Москва, 1965 г.