производительности турбокомпрессоров является изменение частоты вращения.
Пуск турбокомпрессоров производится обычно при разгруженной машине путем соединения полости нагнетания с атмосферой или с полостью всасывания, вследствие чего максимальный момент при пуске не превышает 0,4 номинального.
Автоматика таких машин должна удовлетворять требованиям, основными из которых являются:
1) быстродействие;
2) селективность;
3) чувствительность;
4) надёжность.
Селективностью автоматики называется её способность отключать при коротком замыкании только повреждённый участок или ближайший участок к месту повреждения.
Чувствительность всех видов автоматики оценивается коэффициентом чувствительности и минимальному току короткого замыкания.
Надёжностью работы автоматики заключается в её безопасном действии во всех предусмотренных случаях.
2.4 Выбор рода тока и величины питающей сети
Для питания компрессора выбирается переменный ток, т.к. по сравнению с постоянным током, он легче генерируется и передаётся на большие расстояния.
Для питания силовой части проекта, выбирается переменное напряжение из стандартного ряда напряжений – 6кВ. Цепи управления запитываются стандартным постоянным напряжением 220В.
2.5 Выбор системы электропривода, методов, регулирования скорости и торможения
Разнообразие условий применения турбомеханизмов, их конструкций, режимов эксплуатации определяет возможность и экономическую целесообразность использования различных систем электропривода. Развитие техники самого электропривода обусловливает смену одних систем регулируемого электропривода другими, что также приводит к разнообразию возможных технических решений,
Для привода компрессоров до настоящего времени применялись нерегулируемые электроприводы. Несмотря на очевидные тенденции к более широкому использованию регулируемых электроприводов турбомеханизмов, особенно для мощностей свыше 500 киловатт, нерегулируемый привод будет оставаться основным видом электропривода в
тех случаях, когда режим работы турбомеханизма по технологическим условиям постоянен или мощность турбомеханизмов невелика и регулирование их производительности без больших потерь энергии может быть осуществлено воздействием на турбомеханизм или на его гидравлическую сеть.Наиболее распространенным видом привода вследствие своей простоты и наименьших капитальных вложений является короткозамкнутый асинхронный двигатель. Этот вид привода применяется для турбомеханизмов от самых малых мощностей до нескольких тысяч киловатт. При мощности свыше 300 киловатт наряду с короткозамкнутым двигателем все шире применяют синхронные двигатели.
Системы регулируемого электропривода обеспечивают ступенчатое регулирование частоты вращения. Для двигателей большой мощности получили применение схемы с питанием синхронного двигателя от источников различной частоты.
Регулируемый электропривод с пла
вным изменением частоты вращения в широком диапазоне наилучшим образом удовлетворяет условиям автоматического и экономического регулирования производительности турбомеханизмов.2.6 Расчёт мощности и выбор электродвигателя компрессора
Мощность электродвигателя Р, кВт, определили согласно /4, с.311/ по формуле
, (1)где kз – коэффициент запаса;
Q – производительность, м3/с;
А – работа сжатия, кг×м/м3;
hк – КПД компрессора;
hп – КПД передачи.
Работу А, кг×м/м3, для сжатия воздуха определили согласно /4, с.311/ по формуле
, (2)где р1 – начальное давление, ат;
р2 – конечное давление, ат.
Коэффициент полезного действия компрессора приняли согласно /4, с.311/.
h=0,6 – 0,8.
Kз=1,1 – 1,2.
h=0,9,
, .Мощность электродвигателя для компрессора Рд, кВт опре
делили согласно /2, с.221/ по формуле , (3)где hмех – механический КПД.
hмех=0,7,
.Для электропривода компрессора электродвигатель выбрали согласно /3, с.104/
Таблица 1 – Технические данные двигателя.
Тип двигателя | Мощность, кВт | КПД, % | cosj | Iн, А | ||
4АЗМО – 630/60002УХЛ4 | 630 | 95,7 | 0,88 | 1 | 5,3 | 72 |
2.7 Внесение изменения в схему управления компрессором
Исходя из недостатков схемы управления изменить её можно поставив вместо масленого выключателя вакуумный. Так как, вакуумный выключатель имеет ряд таких достоинств, которых нет у масленого выключателя, это: малые размеры, в момент разрыва контактов не образуется электрическая дуга, малый ход подвижного контакта 5 – 6мм и другие.
2.8 Проверочный расчёт выбранного электродвигателя по нагреву и перегрузке
Для проверки электродвигателя по нагреву должно соблюдаться условие согласно /4, с.185/ по формуле
, (4)где tmax – максимальная установившаяся температура превышения;
tдоп – допустимое превышение температуры для изоляции двигателя.
Допустимое превышение температуры tдоп, °С, определили согласно /4, с.185/ по формуле
, (5)где qдоп – предельно
допустимое превышение температуры ,электроизоляционных материалов применяемых при
изготовлении электрических машин, °С;
q0 – температура окружающей среды, °С.
Предельно допустимое превышение температуры электроизоляционных материалов применяемых при изготовлении электрических машин, приняли согласно /5, с.185, таблица 5.14/
qдоп=155°С.
Температуру окружающей среды, приняли
q0=40°С,
.Максимальную установившеюся температуры превышения определили согласно/4, с.185/ по формуле
, (6)где DРт – мощность тепловых потерь, Вт
А – теплоотдача, Дж/(С×с).
Теплоотдачу определили согласно /4, с.184/ по формуле
, (7)где С – теплоёмкость двигателя;
Тн – постоянная времени нагрева
Постоянную нагрева двигателя, приняли
Тн=2000с.
Мощность тепловых потерь определили согласно /4, с.184/ по формуле
, (8)где Рном – номинальная мощность электродвигателя, кВт;
h - КПД электродвигателя.
Коэффициент полезного дей
ствия электродвигатели принялиh=0,91,
.Теплоёмкость двигателя определили согласно /5,с.127/ по формуле
, (9)где Q – количество теплоты, Дж;
Т1 – температура двигателя перед работой, К;
Т2 – конечная температура двигателя, К.
Температуру двигателя перед работой приняли равной
Т1=313К.
Конечную температуру двигателя приняли равной
Т2=338К.
Количество теплоты определили согласно /5, с.127/ по формуле
, (10)где m – масса двигателя, кг;
с – удельная теплоёмкость, Дж/кг×К.
Массу двигателя взяли равной
m=2660кг.
Удельную теплоёмкость, с изоляцией F, для стали взяли равной
с=460Дж/кг×К,
, , , ,tдоп=115>81,1=tmax.
2.9 Выбор аппаратов з
ащиты и автоматики, плавких вставок, нагревателей тепловых реле и автоматических выключателей, пускателей и трансформаторовАвтоматические выключатели обеспечивают одновременно функции коммутаций силовых цепей и защиты электроприёмника, а также, от перегрузки и коротких замыканий. Аппараты имеют тепловой расцепитель и, как правило, электродинамический расцепитель. Автоматы, как правило, снабжаются дугогасящими устройствами в виде фибровых пластин либо дугогасящих камер. Автоматы используются для коммутации и защиты цепей электроустановок различного назначения. Они устанавливаются в шкафах отходящих линий комплектных трансформаторных подстанций. Автоматы выпускают на переменные напряжения от 220 до 660В и постоянные – от 110 до 440В с ручным и электродвигательным приводом.