Смекни!
smekni.com

Триботехника (стр. 3 из 7)

Исходя из известных представлений о водородном изнашивании, выполненных научно-исследовательских работ и потребностей производства, необходимо проводить работы в следующих направлениях:

  • разработки приборов и методов исследования водородного изнашивания деталей машин;
  • изучение процессов наводороживания металлов при трении с фрикционными пластмассами для оценки количественных характеристик перераспределения водорода в поверхностных слоях, изучение свойств наводороженного металла при трении, влияние режимов трения на наводороживание с широким использованием новейших методов исследования;
  • исследование наводороживания наиболее изнашиваемых деталей машин и оборудования в процессе эксплуатации и оценка вклада в снижение их износостойкости как биографического, так и образуемого при трении водорода с целью разработки требований к качеству конструкционных материалов, смазочным материалам и специальным жидкостям, применяемым в узлах трения;
  • исследование влияния электрического и магнитного полей на процессы наводороживания при трении с целью определения количественных характеристик процессов и разработки новых путей борьбы с водородным изнашиванием;
  • изучение процессов наводороживания поверхностей трения при различных видах обработки поверхностей трения деталей (механические, термические и химико-термические);
  • исследования подавления водородного изнашивания пары трения металл-древесина с целью повышения стойкости режущего инструмента при обработке древесных изделий;
  • разработка методов подавления водородного изнашивания в узлах трения, смазываемых водой при высоких давлениях и скоростях скольжения;
  • разработка методов подавления водородного изнашивания узлов трения с титановыми сплавами с целью повышения их антифрикционных характеристик и расширения применения в узлах трения;
  • изучение общих закономерностей водородного изнашивания и выявления областей его проявления, а также создания научных основ борьбы с ним;
  • изучение действия водорода при абразивном изнашивании в условиях действия коррозионно-активных сред и повышенной влажности, фреттинг-коррозии, контактной усталости, коррозионно-механического изнашивания, кавитации и эрозии;
  • разработка методов подавления водородного изнашивания деталей авиатехники, нефтехимического оборудования, железнодорожного транспорта (рельсов, коле, деталей двигателей тепловозов, в частности цилиндров и поршневых колес), инструмента по обработке меховых изделий, деталей сельскохозяйственных машин и других отраслей техники.

К первоочередным задачам по изучению ИП при трении следует отнести:

  • создание комплекса приборов и установок для изучения ИП;
  • исследование работоспособности шариковых и роликовых подшипников, а также зубчатых передач в условиях ИП;
  • создание новых эффективных металлоплакирующих присадок к смазочным материалам, обеспечивающих режим ИП в двигателях внутреннего сгорания как для приработки, так и для установившегося режима работы;[3]
  • исследование конструктивных особенностей смазочных систем при работе на металлоплакирующих смазочных материалах, определение их эксплуатационных характеристик и оценка эффективности их применения;
  • исследование возможности применения ИП при штамповке, дорновании, протяжке, определение оптимального состава смазочно-охлаждающих жидкостей и их эффективности;
  • исследования трения без смазочного материала в режиме ИП в парах металл-металл, металлополимер-металл;
  • разработка новых масел и смазок, обеспечивающих металлоплакирование в зоне контакта трущихся деталей, создание опытного производства таких материалов и внедрение их на промышленных предприятиях.

Опыт применения избирательного переноса в промышленности показывает, что успех перехода на использование принципиально новых смазочных материалов для узлов трения, технологических процессов, новых материалов и конструкций подвижных сочленений достигается только в тех случаях, когда проводилась систематическая научно-исследовательская работа применительно к конкретным узлам трения машин данной отрасли. Попытка расширить внедрение новых методов повышения износостойкости узлов трения простой передачи промышленным предприятиям технических конструкций или даже опытных смазочных материалов не приводила и не может привести к положительным результатам. Знание общих вопросов теории трения и изнашивания в машинах оказывается недостаточным, требуется изучение специальных разделов физикохимии, трибохимии, трибофизики.[2] В каждой отрасли техники, на объектах которой предполагается проведение работ по избирательному переносу, необходимо обучение специалистов в институтах повышения квалификации или в университетах, где есть подготовка по соответствующей специальности. Опыт тех организаций, которые уже реализовали преимущества избирательного переноса в узлах трения механизмов, должен быть тщательно изучен, но в каждой отрасли в головных научно-исследовательских институтах необходимо создать лаборатории, которые бы накапливали опыт применения ИП и разрабатывали свою техническую документацию.

Проблема расширения и применения ФАБО

Как известно, износостойкость зависит от окончательной (финишной) технологической обработки поверхностей деталей. Имеются обширные экспериментальные исследования по влиянию шероховатости поверхностей трения на интенсивность изнашивания деталей. Установлено, что от финишной обработки деталей зависит не только первоначальный (приработочный) износ, но и установившийся износ. В последние годы разработаны новые технологические процессы финишной обработки деталей, которые позволяют снизить приработочный износ деталей и повысить антифрикционные свойства сочленения (улучшить смазку деталей, снизить коэффициент трения). К таким методам можно отнести вибрационную обработку поверхностей трения и алмазное выглаживание. Однако триботехники считают, что использованы еще не все резервы повышения износостойкости деталей в части применения новых финишных обработок.

В связи с изложенным крайне необходима разработка нового технологического метода окончательной обработки деталей, при котором вообще исключалась бы абразивная обработка поверхности. К таким методам относится разработанная финишная антифрикционная безабразивная обработка (ФАБО). Новая высокопроизводительная оснастка и химические составы обеспечивают высокое качество антифрикционного покрытия.

Сущность ФАБО состоит в том, что поверхность трения детали покрывается тонким слоем латуни, бронзы или меди путем использования явления переноса металла при трении. Перед нанесением покрытия обрабатываемую поверхность обезжиривают и покрывают глицерином или смесью, состоящей из двух частей глицерина и одной части 10%-ного раствора соляной кислоты. В процессе трения окисная пленка на поверхности стали разрыхляется, поверхность медного сплава пластифицируется и создаются условия для его схватывания со сталью. Толщина перенесенного слоя бронзы или латуни 1-2 мкм.

Преимущество ФАБО перед другими финишными операциями состоит в том, что этот метод чрезвычайно прост и не требует сложного оборудования. ФАБО придает стальной или чугунной поверхности высокие антифрикционные свойства. Опыт использования ФАБО для цилиндров двигателей внутреннего сгорания дал возможность существенно изменить мощность двигателя, хороший результат дало и применение ФАБО колес железнодорожного транспорта. Все это свидетельствует о необходимости и целесообразности проведения более обширных исследовательских работ, а также применения данного метода в более широких масштабах.

Проблема совершенствования смазывания деталей сочленений

Смазка резко снижает интенсивность изнашивания. Достаточно ввести в зону контакта деталей небольшое количество смазочного материала, как сила трения может снизиться в 10 раз, а износ поверхностей трения до 1000 раз.

Эффективность смазочной системы зависит от ее конструктивного совершенства и качества смазочного материала. Пока нет четких рекомендаций по дозировке и длительности подачи смазочных материалов в конкретные узлы трения машин. При переводе трущихся деталей машин в режим ИП необходимо создавать принципиально новые смазочные системы, которые бы обеспечили автоматическое регулирование параметров работы системы в зависимости от режима работы машины, то есть необходимо разрабатывать адаптированные смазочные системы, предупреждающие износ трущихся деталей машин и снижающие потери на трение.

В настоящее время уровень технического совершенства машин во многом определяется именно степенью организации смазывания узлов трения. Больше всего нуждается в смазочных системах станкостроительная, автомобильная и тяжелая промышленность. Увеличение выпуска смазочных масел должно сопровождаться повышением их эффективности, что требует проведения научно-исследовательских разработок по конструктивному и технологическому совершенствованию производства основных узлов систем, создания поточных линий, улучшения планирования и использования экономических стимулов повышения производительности труда. При этом большое внимание следует уделять использованию современных достижений триботехники. Смазочные системы должны использоваться в ряде машин (среди них металлорежущие станки кузнечно-прессовые машины, башенные краны и лифты, экскаваторы, тракторы, магистральные локомотивы, грузовые автомобили и автобусы, сельскохозяйственная техника и др.). По экспертной оценке специалистов оснащению смазочными системами и многоотводными насосами, обеспечивающими точность и своевременность подачи смазки, подлежит до 85% машин и оборудования (около 2,5 млн. единиц).