Смекни!
smekni.com

Техническое зрение роботов (стр. 2 из 8)

Проблема, связанная с пред­ставлением прямой линии урав­нением у =ах+b, состоит в том, что оба параметра а и b стремятся к бесконечности, если линия принимает вертикаль­ное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде

xcosq+ysinq=b.

Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости qr. Как и прежде, М точек, лежащих на прямойxcosqi+уsinqi==ri, соответствуют М синусоидальным кривым, кото­рые пересекаются в точке (qi,ri) пространства параметров. Если используется метод возрастания q и нахождения для него соот­ветствующего r, процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (qi,ri).

2.1.3.Глобальный анализ с помощью методов теории графов.

Изложенные выше методы основаны на задании последовательности точек контура, полученных в результате градиентного пре­образования. Этот метод редко применяется для предваритель­ной обработки данных в ситуациях, характеризуемых высоким уровнем шума, вследствие того, что градиент является произ­водной и усиливает колебания интенсивности. Рассмотрим гло­бальный подход, основанный на представлении сегментов кон­тура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно слож­нее и требует больше времени обработки, чем методы, изложен­ные выше.

Сначала дадим несколько простых определений. Граф G= (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различ­ных элементов из N. Каждая пара из А называется дугой.

Граф, в котором дуги являются направленными, называется на­правленным графом. Если дуга выходит из вершины ni, к вер­шине пj, тогда пj называется преемником вершины ni. В этом случае вершинаni называется предшественником вершины пj. Процесс идентификации преемников каждой вершины назы­вается расширением этой вершины. В каждом графе опреде­ляются уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (niпj) приписывается стоимость c(niпj). Последовательность вер­шин п1,n2,...,nk, где каждая вершинаni является преемником вершиныri-1, называется путем отni к пk, а стоимость пути определяется формулой

.

Элемент контура мы определим как границу между двумя пик­селами р и q. В данном контексте под контуром пони­мается последовательность элементов контура.

2.2.Определение порогового уровня

Понятие порогового уровня (порога) тест вида

Т=Т[х, у, р(х, у),f(х, у)],

гдеf(x, у) —интенсивность в точке (х, у), р(х, у)—некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:

так что пикселы вg(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объек­тов больше интенсивности фона. Противоположное условие по­лучается путем изменения знаков в неравенствах.

2.2.1.Глобальные и локальные пороги.

Если значение Т в уравне­нии зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.

Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображе­ния, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.

Ниже мы рассмотрим ряд методов для выбора порогов, ис­пользуемых при сегментации. Хотя некоторые из них могут при­меняться для выбора глобального порога, они обычно исполь­зуются в ситуациях, требующих анализа локального порога.

2.2.2.Выбор оптимального порога.

Часто рассматривают гисто­грамму, состоящую из суммы значений функции плотности ве­роятности. В случае бимодальной гистограммы аппроксимирую­щая ее функция дается уравнением

p(z)=P1p1(z)+P2p2(z),

где интенсивность z—случайная переменная величина,p1(z) и p2(z)—функции плотности вероятности, a P1 иP2 – априорные вероятности. В данном случае априорные вероятности означают появление двух видов уровней интенсивности на образе. Полная гистограмма может быть аппроксимирована суммой двух функций плотности вероятности. Если известно, что объект состоит из светлых пиксе­лов и они занимают 20 % площади образа, тоPi==0,2. Необхо­димо, чтобы

Р1г=1.

В данном случае это означает, что на остальную часть образа приходится 80 % пикселов фона. Введем две следующие функции отz:

d1(z)=P1p1(z),

d2(z)=P1p1(z).

Из теории принятия решений известно, что средняя ошибка определения пиксела объекта в качестве фона (и на­оборот) минимизируется с помощью следующего правила: рас­сматривая пиксел со значением интенсивности z, мы подстав­ляем это значение z в уравнения (8.2-13) и (8.2-14). Затем мы определяем пиксел как пиксел объекта, еслиd1(z)>d2(z), или как пиксел фона, если d2(2) >d1(z). Тогда оптимальный порог определяется величиной z, для которойd1{z)=d2(z). Таким образом, полагая в уравнениях z=T, полу­чаем, что оптимальный порог удовлетворяет уравнению

P1р1(T)=P2p2(T).

рис. Гистограмма интенсивности (а) и ее аппроксимация в виде •суммы двух функций плотности вероятности (б).