В целях равномерного распределения компенсирующих устройств целесообразно подключать конденсаторную установку к шинам (РП) таким образом, чтобы реактивная нагрузка этого РП составляла более половины мощности подключаемой конденсаторной установки.
При индивидуальной компенсации (рис.10.1,г), когда конденсаторная установка подключается непосредственно к зажимам потребляющего реактивную мощность электроприемника, такой способ является наиболее эффективным в отношении разгрузки от реактивной мощности питательной и распределительной сетей трансформаторов и сетей высшего напряжения, но при этом получается относительно недостаточное использование конденсаторных установок, так как при отключении электроприемника отключается и его конденсаторная установка. В целом по всей шахте потребуется большая установленная мощность конденсаторов. Индивидуальная компенсация целесообразна при высоком коэффициенте одновременности для некоторых видов электроприемников, являющихся постоянными потребителями реактивной мощности.
Преимуществом индивидуальной компенсации является и то, что для конденсаторной установки используется то же пусковое устройство, что и для электроприемника, а разрядным сопротивлением служит электроприемник. Возможны также варианты комбинированного размещения конденсаторных установок. Все рассмотренные выше способы компенсации имеют положительные стороны, благодаря чему каждый из них находит свое применение.
Определение наивыгоднейших решений выбора способа компенсации реактивной мощности производится на основании технико-экономических расчетов тщательных исследований производственных условий, факторов конструктивного характера и т.д. При выборе места размещения конденсаторной установки в распределительной сети необходимо учитывать ее влияние на режим напряжения и величину потерь энергии в сети.
Как правило, компенсация реактивной мощности должна производиться в той же сети (на том же напряжении), где она потребляется, три этом будут минимальные потери энергии, а следовательно, и меньшие мощности трансформаторов. Но могут быть и исключения. Например, на предприятии установлено большое количество двигателей напряжением 0,66 кВ с коэффициентом мощности 0,4 – 0,6. Для решения этого вопроса можно принять индивидуальную компенсацию, т.е. установку конденсаторов около каждого двигателя. Однако с учетом технологии данного производства эти двигатели работают в течение смены с большими перерывами и изменяющейся нагрузкой. Таким образом, установка индивидуальной компенсации будет экономически невыгодна из-за недоиспользования большой установленной мощности конденсаторов, а если учесть, что нельзя установить конденсаторы внутри шахты из-за наличия газа и пыли и недостаточной вентиляции, то следует проверить возможность групповой компенсации на напряжения 660/1140 В.
Но для групповой компенсации необходимо место внутри ПУПП для размещения конденсаторной установки, а его может не оказаться. Следовательно, осуществить компенсацию реактивной мощности в той же сети 660/1140 В, где она потребляется, в данном случае не представилось возможным.
При анализе участковой сети напряжением 660/1140 В на данном предприятии, а также в связи с неэкономичным использованием конденсаторных установок у малозагруженных двигателей и наличием места в распределительном устройстве (РУ) 6 кВ подстанции для установки конденсаторов напряжением 6 кВ наиболее приемлемым и экономически оправданным оказался централизованный способ компенсации реактивной мощности на шинах 6 кВ ЦПП.
При компенсации реактивной мощности необходимо также учитывать характер изменения нагрузки внутри шахты. Если нагрузка шахты подвергается значительным колебаниям реактивной мощности, необходимо установить конденсаторную установку с автоматическим регулированием ее мощности. При загрузке большей части графика постоянной реактивной нагрузкой возможна установка в соответствующей части постоянно включенной нерегулируемой конденсаторной установки, а остальную часть конденсаторной установки предусматривают с автоматическим регулированием ее мощности в зависимости от графика реактивной мощности предприятия. Кроме установки специальных компенсирующих устройств, для выравнивания графика реактивной нагрузки на промышленных предприятиях, необходимо стремиться к уменьшению передачи реактивной мощности по электрическим сетям естественными мерами: за счет упорядочения технологического процесса, улучшения режима работы электроприемников и др.
Проведем расчет фактических токов и анализ вводных кабелей энергосистемы шахты Комсомольская:
где Рр – взята из данных предоставленных службой главного энергетика ш. Комсомольская;
cosj – (средневзвешенный) предоставлен службой главного энергетика ш. Комсомольская;
U – 660 В – для питания низковольтных потребителей;
U – 1140 В – для питания наиболее мощных низковольтных потребителей;
U – 6000 В – для питания подземных понизительных подземных подстанций, и наиболее мощных асинхронных двигателей.
где Кот = 1 – коэффициент изменения напряжения трансформаторной подстанции при положении отпайки 0;
– коэффициент трансформации трансформаторной подстанции;Кс – коэффициент спроса предоставленный службой главного энергетика.
10.1 Расчет токовых нагрузок по блоку «Северный»
Токоприемники РПП-4С (ДП.180400.06)
Для ТП №32: Руст = 107 кВт; Ррас = 43 кВт; Кс = 0,4.
Фактический ток нагрузки:
Ток нагрузки ТП:
Для ТП №40: Руст = 230 кВт; Ррас = 115 кВт; Кс = 0,5.
Фактический ток нагрузки:
Ток нагрузки ТП:
Для ТП №51: Руст = 40 кВт; Ррас = 20 кВт; Кс = 0,5.
Фактический ток нагрузки:
Ток нагрузки ТП:
Для ТП №82: Руст = 40 кВт; Ррас = 24 кВт; Кс = 0,6.
Фактический ток нагрузки:
Ток нагрузки ТП:
Расчет сечения вводных кабелей РПП-4С
Ввод №1 L = 1635 м сеч. 3х70 кв. мм
Ввод №2 L = 1705 м сеч. 3х70 кв. мм
Рсум. рас = 43 + 115 + 20 + 24 = 202 кВт
Фактический ток нагрузки:
Ток нагрузки токоприемники РПП-4С:
Суммарный расчетный ток В.Н. – 367 А; расчетная нагрузка на ввод – 2114 кВт
При действующих токоприемниках РПП-4С вводные кабели на РПП-4С проходят проверку как в нормальном, так и в аварийном режимах (табл. 10.1).
Дальнейшие расчеты идентичны, сведем их в таблицу:
Таблица 10.1
Место установки | Рсум. расч , кВт | Iф , А | Lвводн.каб , м | Sвводн.каб , мм2 | |
Н.Н. | В.Н. | ||||
РПП-3С | 3822 | 1571 | 647 | L1 = 1232 L2 = 1300 | S1 = 3х120 S2 = 3х95 |
РПП-2С | 2192 | 2949 | 392 | L1 = 1243 L2 = 1150 | S1 = 3х95 S2 = 3х95 |
РПП-1С | 7183 | 1112 | 1227 | L1 = 1013 L2 = 986 | S1 = 3х120 S2 = 3х120 |
ЦПП конвейеризации | 4509 | 358 | 801 | L1 = 1360 L2 = 1400 | S1 = 3х150 S2 = 3х150 |
ЦПП-центр | 9616 | 121 | 1671 | L1 = 2213 L2 = 21100 L3 = 2200 L4 = 2110 | S1 = 3х150 S2 = 3х150 S3 = 3х150 S4 = 3х150 |
ЦПП-725-ю | 4579 | 4945 | 811 | L1 = 780 L2 = 795 | S1 = 3х150 S2 = 3х150 |
ЦПП-620-ю | 6512 | 1120 | 1121 | L1 = 1485 L2 = 1615 L3 = 1515 L4 = 1515 | S1 = 3х150 S2 = 3х150 S3 = 3х150 S4 = 3х150 |
ЦПП-620-с | 3177 | 115 | 445 | L1 = 1367 L2 = 1400 | S1 = 3х150 S2 = 3х150 |
ЦПП -270 | 1901 | 48 | 250 | L1 = 840 L2 = 850 | S1 = 3х120 S2 = 3х120 |
Питание подземных потребителей горизонта –270 (ЦПП –270) осуществляется по вводам №1 и №4, обеспечивая нормальный и аварийный режим.