Смекни!
smekni.com

Синтез управляющего автомата модели LEGO транспортной тележки и моделирование ее движения (стр. 1 из 3)

Кубанский государственный технологический университет

Ка­федра ав­то­ма­ти­за­ции тех­но­ло­ги­че­ских про­цес­сов

Задание на контрольную работу

По дис­ци­п­лине “Ав­то­ма­ти­зи­ро­ван­ное управ­ле­ние дис­крет­ными про­цес­сами” для сту­ден­тов за­оч­ной формы обу­че­ния спе­ци­аль­но­сти 21.01 — “Ав­то­ма­тика и управ­ле­ние в тех­ни­че­ских сис­те­мах” на тему: “Син­тез управ­ляю­щего ав­то­мата мо­дели LEGO — “транс­порт­ная те­лежка” и мо­де­ли­ро­ва­ние её дви­же­ния вдоль трассы”


Вы­дано:

Ас­пи­ран­том каф. АПП 06.09.99 /На­пы­лов Р.Н./

сту­денту гр. ____________ /____________/

Крас­но­дар 1999

1 Исходные данные

1.1 Управ­ляе­мый про­цесс — дви­же­ние мо­дели LEGO транс­порт­ной те­лежки вдоль за­дан­ной тра­ек­то­рии в виде бе­лой по­лосы. Ори­ен­та­ция те­лежки от­но­си­тельно трассы ре­гу­ли­ру­ется дат­чи­ками кон­тра­ста.

1.2 Ус­лов­ная схема транс­порт­ной те­лежки при­во­дится на ри­сунке 1.1. Те­лежка дви­жется за счёт зад­него при­вода, соз­даю­щего по­сто­ян­ное тяг­ло­вое уси­лие
. Вра­ще­ние пе­ред­него ко­леса те­лежки осу­ще­ст­в­ля­ется с по­мо­щью ре­вер­сив­ного по­во­рот­ного дви­га­теля, от­ра­ба­ты­ваю­щего с по­сто­ян­ной уг­ло­вой ско­ро­стью
, где
— угол по­во­рота пе­ред­него ко­леса (ри­су­нок 1.1)

1.3 Транс­порт­ная те­лежка, как объ­ект управ­ле­ния имеет сис­тему дис­крет­ных вход­ных и вы­ход­ных сиг­на­лов, струк­турно пред­став­лен­ную на ри­сунке 1.2. Ко­ди­ровка ука­зан­ных сиг­на­лов сле­дую­щая:

Таблица 1.1 – Кодировка управляющих сигналов

Разряд сигнала

X

Управляющее действие

X0

1 – двигатель тележки включен

0 – двигатель тележки выключен

X1

1 – поворотный двигатель отрабатывает влево

0 – двигатель влево не отрабаты­вает

X2

1 – поворотный двигатель отрабатывает вправо

0 – двигатель вправо не отрабатывает

Таблица 1.2 – Кодировка выходных сигналов

Разряд сигнала

Y

Событие

Y0

1 – левый датчик над светлой точкой трассы

0 – левый датчик над тёмной точкой трассы

Y1

1 – правый датчик над светлой точкой трассы

0 – правый датчик над тёмной точкой трассы



Сиг­налы Y ис­поль­зу­ются в ка­че­стве об­рат­ной связи управ­ляю­щего ав­то­мата. По из­ме­не­нию этих сиг­на­лов воз­можно су­дить о те­ку­щем по­ло­же­нии те­лежки от­но­си­тельно бе­лой по­лосы трассы. Сиг­налы X вы­ра­ба­ты­ва­ются управ­ляю­щим ав­то­ма­том в за­ви­си­мо­сти от по­ве­де­ния во вре­мени сиг­на­лов Y так, что бы обес­пе­чить сов­па­де­ние тра­ек­то­рий дви­же­ния те­лежки и трассы.

1.4 Ре­ше­ние о по­дачи пи­та­ния на зад­ний при­вод те­лежки и, рас­по­ло­жен­ный на ней, управ­ляю­щий ав­то­мат при­ни­мает внеш­ний опе­ра­тор. По­этому, ис­ход­ным со­стоя­нием те­лежки яв­ля­ется ак­тив­ность дви­га­теля при­вода. В этом слу­чае за­дача управ­ляю­щего ав­то­мата со­стоит только в обес­пе­че­нии дви­же­ния те­лежки вдоль трассы.

1.5 До­пу­ще­ния, де­лае­мые при рас­смот­ре­нии управ­ляе­мой те­лежки в ди­на­мике:

1) тяг­ло­вое уси­лие

по­сто­янное;

2) приведённая сила трения

пропорциональна линей­ной скорости движения тележки;

3) сила трения

, подменяющая реакцию
в момент, когда
(переднее колесо проскальзывает), постоянна и пропорциональна массе тележки;

4) сила трения

, подменяющая реакцию
в момент, когда
(тележку заносит), также постоянна и пропор­циональна массе тележки;

5) масса тележки

и её момент инерции
относи­тельно центра масс связаны зависимостью:
, как если бы вся масса тележки была сосредоточена в стержне
(рисунок 1.1).

2 Основное задание

2.1 Сформировать модель управляющего автомата в форме таблицы переходов и выходов автомата Милли, предварительно составив список его возможных состояний и перекодировав входной алфавит автомата во множество много­значной логики (Y - четырёхзначное);

2.2 Минимизировать, в случае возможности, таблицу пе­реходов и выходов автомата Милли;

2.3 Составить алгебрологические выражения функции пе­реходов и функции выходов минимизированного автомата, ис­пользуя только двоичное представление входных и выходных сигналов;

2.4 Минимизировать полученные функции;

2.5 По минимизированным логическим функциям зарисо­вать цифровую схему управляющего автомата (стандарт услов­ного графического изображения логических элементов — Рос­сийский).

3 Дополнительное задание

Вывести модель динамики транспортной тележки. Положе­ние центра масс тележки в плоской системе координат зада­вать вектором положения

. Положение точки приложения силы тяги привода задавать вектором
.

4 Список источников

4.1 Юдицкий С.А., Магергут В.Э. Логическое управле­ние дискретными процессами. Модели, анализ, синтез. — М.: Машиностроение, 1987. — 176 c.

4.2 Кузнецов О.П., Адельсон-Вольский Г.М. Дискрет­ная математика для инженеров. — М.: Энергоатомиздат, 1987. — 450 c.

4.3 Шварце Х., Хольцгрефе Г.-В. Использование ком­пью­теров в регулировании и управлении: Пер. с нем.—М.: Энер­гоатомиздат, 1990. — 176 с.: ил.

4.4 Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. — М.: Энергоатом­издат, 1987. — 304 c.

4.5 Мишель Ж., Лоржо К., Эспью Б., Программируемые контроллеры. — Пер. c французского А.П. Сизова — М.: Маши­ностроение, 1986.

4.6 Микропроцессоры: В 3-х кн. Кн. 2. Средства со­пря­жения. Контролирующее и информационно-управляющие сис­темы: Учеб. Для втузов/В.Д. Вернер, Н.В. Воробьёв, А.В. Горячев и др.; Под ред. Л.Н. Преснухина. — М.: Высш. шк., 1986. — 383 c.: ил.

4.7 Фиртич В. Применение микропроцессоров в систе­мах управления: Пер. с нем. — М.: Мир, 1984,—464 c., ил.

5 Решение основного задания

5.1 Выходной алфавит транспортной тележки является входным алфавитом управляющего автомата Y. Для возможности применения теории конечных автоматов перекодируем его во множество четырёх знаков в соответствии с таблицей 5.1.

Таблица 5.1 – Кодировка входного алфавита управляющего автомата

Y0 Y1 Y

0

0

1

1

0

1

0

1

0

1

2

3

5.2 При определении возможных состояний управляющего автомата будем руководствоваться правилом: — допустимо введение избыточных состояний, которые при последующей ми­нимизации автомата исключаются; недопустим пропуск необхо­димого состояния, который уменьшает адаптированность авто­мата к внешним ситуациям.

Перечень возможных состояний ав­томата, отождествлён­ных с ситуационными событиями транс­портной тележки, приво­дится ниже.

Таблица 5.2 – Перечень состояний управляющего автомата транспортной тележки

Код
состояния S
Описание состояния

0

1

2

3

Исходное состояние неуправляемого движения;Поворот вправо (поворотный двигатель непре­рывно отрабатывает вправо);Поворот влево (поворотный двигатель непрерывно отрабатывает влево);Конфликт поворотов.

5.3 Для возможности формирования математической мо­дели управляющего автомата рассмотрим описательный алго­ритм управления транспортной тележки по состояниям:

― В исходном состоянии тележка непрерывно движется под действием привода. Ни один из датчиков контраста не находится над белой полосой трассы. Поворотный двигатель остановлен;

― При возникновении белой полосы под левым датчиком контраста включается поворотный двигатель на отработку влево. Привод отключается и далее следует движение по инерции, что уменьшает вероятность заноса тележки;