Расчет тепловой схемы ПТУ К-500-65/3000.
Постановка задачи.
Расчет тепловой схемы АЭС сводится к расчету стандартной турбоустановки. Расчет приведен для турбоустановки К-500-65/3000, паровой турбины с мощностью 500 МВт для одноконтурной АЭС с реактором РБМК-1000.
Конечной целью расчета является определение электрической мощности и КПД турбоустановки при заданном расходе пара на турбину и заданной мощности теплофикационной установки.
Описание расчетной тепловой схемы.
Особенности тепловой схемы одноконтурной АЭС связаны с радиоактивностью паров. В любой схеме таких АЭС обязательно: во-первых, включение в тепловую схему испарителя для получения нерадиактивного пара, подаваемого на уплотнения турбины; во-вторых, использование промежуточного водяного контура между греющим паром и водой теплосети. Выполнение этих решений обязательно. Оба этих условий были реализованы в рассчитываемой тепловой схеме.
Производится расчет паротурбинной установки, в которой образование пара происходит в корпусе реактора блока АЭС с РБМК-1000. В барабан-сепараторе происходит разделение острого пара и воды. Острый пар подается на ЦВД турбины и двухступенчатый пароперегреватель (ПП2).
Турбина К-500-65/3000 состоит из одного двухпоточного ЦВД и четырех двухпоточных ЦНД. Отборы из ЦВД и ЦНД идут на регенеративные подогреватели, а также на подогреватели сетевой воды, деаэратор и испаритель. Для уменьшения поступления продуктов коррозии в реакторную воду, ПВД не устанавливаются. Охладители дренажей установлены после каждого ПНД (в данной схеме пять ПНД). Используем каскадного слива дренажей ПНД, которые сливаются в конденсатор. Конденсатный насос установлен по двухподъемной схеме: КН1 – после конденсатора, а КН2 – перед ПНД1.
Подогрев основного конденсата, проходящего последовательно через все ПНД, происходит в следующей последовательности: ПНД1 – 7 отбор, ПНД2 – 6 отбор, ПНДЗ – 5 отбор, ПНД4 – 4 отбор, ПНД5 – 3 отбор. Также происходит подогрев сетевой воды: Б1 – 5 отбор, Б2 – 4 отбор, БЗ – 3 отбор, Б4 – 2 отбор. За счет 2 отбора происходит деаэрация, а также парообразование нерадиактивного пара в испарителе.
Между ЦВД и ЦНД установлен сепаратор и двухступенчатый пароперегреватель. Дренаж после сепаратора сбрасывается в ПНДЗ, после ПП1 и ПП2 в деаэратор.
От естественных примесей воды реактор одноконтурной АЭС надежно защищает 100 % - ная конденсатоочистка. БОУ установлен перед КН2, после КН1 установлены основной эжектор и эжектор уплотнений.
Расчетная схема ПТУ и h, s – диаграмма процесса в турбине.
Расчетная схема составлена на основе принципиальной схемы, разработанной заводом-изготовителем (ХТГЗ). Исходные данные по параметрам отборов турбины К-500-65/3000 были взяты из [1] и сведены в табл 0.4.-1. Некоторые числовые данные были взяты из [4], проекта турбоустановки К-750-65/3000 (близкой по своим характеристикам к рассчитываемой). В табл. 0.4.-1 представлены данные о параметрах пара в отборах турбины. По таблице построена h, s – диаграмма процесса расширения пара в турбине (рис.2). В табл. 0.4.-2 представлены основные исходные данные.
Таблица 0.4.-1: Параметры пара в отборах турбины К-500-65/3000.
Отбор i | Давление pi, МПа | Ст. сухости X | Энтальпия hi, кДж/кг | Температура Тi,°С |
0 | 6.59 | 0.995 | 2770 | 281.8 |
1 | 2.055 | 0.900 | 2608 | 213.8 |
2 | 1.155 | 0.880 | 2544 | 186.3 |
3 | 0.632 | 0-.860 | 2468 | 160.9 |
4 | 0.348 | 0.849 | 2390 | 138.7 |
5 | 0.142 | - | 2852 | 189.3 |
6 | 0.066 | - | 2724 | 122 |
7 | 0.026 | 0.990 | 2596 | 65.9 |
Давление в конденсаторе: рк=0.004 МПа (hк=2416 кДж/кг).
Таблица 0.4.-2: Основные исходные данные.
Характеристика | Численное значение | Размерность |
- расход пара на турбоустановку | 793.1 | кг/с |
- давление пара перед турбоустановкой | 6.59 | МПа |
- степень сухости пара перед турбоустановкой | 0.995 | - |
- температура промперегрева | 265.4 | оС |
- давление в деаэраторе | 0.69 | МПа |
- давление в конденсаторе | 0.04 | МПа |
- тепловая мощность, отдаваемая в теплосеть | 22.2 | МВт |
Таблица параметров и расходов рабочего тела.
При заполнении таблицы используем материал изложенный в [2]. Значения параметров рабочего тела, необходимые для расчета уравнений теплового баланса элементов схемы и заданные расходы, так же как и основные результаты расчета, удобно сводить в таблицу. Данные в строках 1, 2, 3 – номера отборов, давления и энтальпии в них вносятся из табл. 0.4.-1. Давления в подогревателях (строка 4) рассчитываются по давлению в отборах с учетом гидравлических потерь по формуле:
- необходимое давление в точке турбины, из которой отбирается пар на подогреватель r:
- относительная величина потери давления в паропроводе от турбины до подогревателя:
r – номер подогревателя по ходу воды, включая деаэратор.
В стоку 5 внесены температуры насыщения при этих давлениях. Строка 6 заполняется при наличии у подогревателя охладителя дренажа (указывается выбранный недогрев в нем). Температура дренажа (строка 7) при отсутствии охладителя дренажа равна температуре насыщения в подогревателе (строка 5), в противном случае температура дренажа рассчитывается по формуле:
- температура среды на выходе из предыдущего подогревателя (строка 11);
- значение min температурного напора в охладителе дренажа (строка 6).
Энтальпии дренажей подогревателей (строка 8) определяются по [4] на линии насыщения при давлении в соответствующем подогревателе. Давление воды за подогревателями (строка 9) находят по напору питательного и конденсатного насосов с учетом гидравлических потерь по водяной стороне подогревателя. Температура обогреваемой среды после подогревателя (строка 11) определяется по формуле:
- температура насыщения в подогревателе (строка 5);
- принятое значение минимального температурного напора (строка 10).
Энтальпия нагреваемой воды (строка 12) определяется по соответствующим давлениям и температурам (строки 9 и 11). В строку 6 и 10 вносятся выбранные значения с учетом используемых в схеме подогревателей. В строку 13 вносятся рассчитанные значения расходов пара через элементы схемы.
Таблица 0.4.-3: Параметры рабочего тела в элементах расчетной схемы.
№ стр. | Параметры среды | Пр* | ПП2 | ПП1 | Д | И | Б4 | П5+ОД | БЗ | Б2 | П4+ОД | Пр** | С | Б1 | ПЗ+ОД | П2+ОД | П1+ОД | К |
1 | 2 | 3 | 4 | 6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 16 | 16 | 17 | ||
12345 | Греющий парНомер отбораДавление в отборе, МПаЭнтальпия, кДж/кгДавление вподогревателе, МпаТемпература насыщенияв подогревателе, град С | 0 6.59 2770 --- --- | 0 6.59 2770 6.29 278.4 | 1 2.055 2608 1.952 211.2 | 2 1.155 2608 0.69 164.2 | 2 1.155 2608 0.64 161.4 | 2 1.155 2608 1.09 183.7 | 3 0.632 2544 0.6 158.9 | 3 0.632 2544 0.59 158.2 | 4 0.348 2468 0.32 135.8 | 4 0.348 2468 0.33 136.8 | 4 0.348 2468 --- --- | 4 0.348 2468 0.328 136.6 | 5 0.142 2852 0.129 106.9 | 5 0.142 2852 0.135 108.2 | 6 0.066 2724 0.063 87.2 | 7 0.026 2596 0.025 65.0 | К 2416 0.004 29.0 |
678 | Дренаж греющего параНедогрев, град СТемпература, град СЭнтальпия, кДж/кг | --- --- --- | --- 278.4 1219 | --- 211.2 903.2 | --- --- --- | --- 161.4 681.6 | --- 183.7 779.6 | 10 141.8 596.8 | --- 158.2 667.7 | --- 135.8 571.1 | 10 112.2 470.6 | --- --- --- | --- 136.6 574.6 | --- 106.9 448.2 | 10 90.2 377.7 | 10 68.0 284.6 | 10 50 209.3 | --- 29.0 121.4 |
9101112 | Обогреваемая среда на вых.Давление, МпаНедогрев, град СТемпература, град СЭнтальпия, кДж/кг | --- --- --- --- | 0.33 13.4 265 2973 | 0.34 13.4 197.8 2847 | 0.69 --- 164.2 694 | 0.6 --- --- 2757 | --- 18.7 165 698 | 1.20 5 153.9 649.1 | --- 10 148.2 625.3 | --- 8 127.8 538.1 | 1.30 5 131.8 554 | --- --- --- --- | 0.32 --- --- 2728 | --- 6 100.9 424.2 | 1.40 6 102.2 428.3 | 1.50 7 80.2 335.7 | 1.60 7 58 242.7 | --- --- --- --- |
13 | Расходы пара, кг/с | 1.2 | 42.57 | 36.58 | 6.19 | 6.59 | 2.28 | 36.53 | 2.53 | 3.17 | 44.63 | 0.8 | 96.59 | 2.57 | 16.14 | 19.27 | 25.89 | 769.53 |
Пр* - протечки острого пара через уплотнения штоков клапанов.