Смекни!
smekni.com

Расчет механизмов – козлового консольного крана грузоподъемностью 8 тонн (стр. 3 из 3)

Тном=9550Р/n=9550*1,7/835=19,44

Частота вращения вращения ходового колеса (мин-1):

nб=60vпер/p*Dк=60*0,63/3,14*0,36=32,89

где: vпер – скорость передвижения тележки м/с;

Dк – расчетный диаметр колеса, м.

Требуемое передаточное число привода:

U=n/nк=835/32,89=25,38

Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=29,06 и Pр=8,1 кВт.

Номинальный момент передаваемый муфтой двигателя, Н*м:

Тм=Тс=FперDк/2uрh=2014,31*0,36/2*29,06*0,85=14,67

Расчетный момент для выбора соединительной муфты, Н*м:

Тммном*k1*k2=14,47*1,2*1,2=21,12

Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 31,5 Н*м с диаметром D=90 мм.

Момент инерции муфты, кг*м2:

Iм=0,1*m*D2=0,1*2*0,09=0,018

Фактическая скорость передвижения тележки, м/с:

vперф=vпер*u/up=0,63*25,38/29,06=0,55 – отличается от стандартного ряда на допустимую величину.

Примем коэффициент сцепления ходовых колес с рельсами j=0,12

коэффициент запаса сцепления kj=1,1.

Вычисляем максимально допустимое ускорение грузовой тележки при пуске в предположении, что ветровая нагрузка Fp=0, м/с2

amax=[(zпр((j/kj)+(f*dk/Dk))/z)-(2m+f*dk)kp/Dk)*g=

=(2((0,12/1,1)+(0,02*0,072/0,36))/4-

-(2*0,0006+0,02*0,072)*2,5/0,36)*9,81=0,46 м/с2

где: zпр- число приводных колес;

z – общее число ходовых колес;

j - коэффициент сцепления ходовых колес с рельсами: при

работе на открытом воздухе j=0,12

f – коэффициент трения (приведенной к цапфе вала) в подшипниках

опор вала ходового колеса

m - коэффициент трения качения ходовых колес по рельсам м;

dk – диаметр цапфы вала ходового колеса, м:

kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес

Средний пусковой момент двигателя, Н*м:

Тср.п=(1,5…1,6)*Tном=1,5*19,44=29,16

Наименьшее допускаемое время пуска по условию сцепления, с:

tдоп=v/amax=0,55/0,464=1,185

Момент статических сопротивлений при работе тележки без груза Н*м:

Тс=F’перDк/2uрh=575*0,36/2*29,0,6*0,85=4,150

Момент инерции ротора двигателя Iр=0,02 кг*м2 и муфты быстроходного вала Iм=0,018

I=Ip+Iм=0,02+0,018=0,038 кг/м2

Фактическое время пуска механизма передвижения тележки

с грузом, с:

tп.г=(d*I*n/9,55(Тср.пс))+9,55*(Q+mт)*v2/n((Тср.пс)*h=

=(1,2*0,038*835/9,55(29,16-14,67))+9,55*

*(8000+3200)*0,552/835(29,16-14,67)*0,85=5,42

Фактическое время пуска механизма передвижения тележки

без груза, с:

tп.г=(d*I*n/9,55(Тср.пс))+9,55*mт*v2/n((Тср.пс)*h=

=(1,2*0,038*835/9,55(29,16-4,150))+9,55*

*3200*0,552/835(29,16-4,150)*0,85=2,3

Фактическое ускорение грузовой тележки без груза, м/с2

аф=Vпер/tп=0,55/2,3=0,23

Проверяем суммарный запас сцепления. Для этого найдем:

А) суммарную нагрузку на привод колеса без груза, Н:

Fпр=m*zпр*g/z=3200*2*9,81/4=15696

Б) суммарную нагрузку на привод колеса с грузом, Н:

Fпр=m*zпр*g/z=(3200+8000)*2*9,81/4=54936

В) сопротивление передвижению грузовой тележки без груза, Н:

F’пер=kp*m*g(f*dk+2m)/Dk=2,5*3200*9,81*(0,02*0,072+2*0,0006)/0,36=

= 575,5

C) сопротивление передвижению грузовой тележки с грузом, Н:

F’пер=kp*m*g(f*dk+2m)/Dk=2,5*(3200+8000)*9,81*(0,02*0,072+2*0,0006)/

/0,36=2014

Определим фактический запас сцепления:

kj=Fпр*j/F’пер+mg((a/g)-zпр*f*dk/z*Dk)=

=15696*0,15/575,5+3200*9,81((0,23/9,81)-2*0,02*0,072/4*0,36)=1,2

Определение тормозных моментов и выбор тормоза. Максимальное допустимое замедление грузовой тележки при торможении, м/с2:

amaxт=((zпр((j/kj)-(f*dk/Dk))/z)+(2m+f*dk)/Dk)*g=((2((0,15/1,2)-(0,02*0,072/0,36))/4)+(2*0,0006+0,02*0,072)/0,36)*9,81=0,66 м/с2

По таблице принимаем амахт=0,15 м/с2

Время торможения грузовой тележки без груза, с:

tt=Vфпермахт=0,55/0,15=3,66 с.

Сопротивление при торможении грузовой тележки без груза, Н:

Fтрт=mg(f*dk+2m)/Dk=3200*9,81(0,02*0,072+2*0,0006)/0,36=230,208 H.

Момент статических сопротивлений на тормозном валу при торможении грузовой тележки, Н*м.

Тст=Fттр*Dk*h/2*up=230,208*0,36*0,85/2*29,6=1,189

Момент сил инерции при торможении грузовой тележки без

груза, Н*м:

Тинт=(d*I*n/9,55*tт)+9,55*m*v2*h/n*tт=

=(1,2*0,038*835/9,55*3,66)+9,55*3200*0,552*0,85/830*

*3,66=3,6

где: tт- время торможения механизма, с:

Расчетный тормозной момент на валу тормоза, Н*м:

Тртинт – Тст=3,6 – 1,89 =1,77

Из таблицы III 5.13 выбираем тормоз типа ТКГ – 160 с диаметром тормозного шкива Dт=160 мм и наибольшим тормозным моментом Тт=100 Н*м, который следует отрегулировать до Тт=41 Н*м.

Минимальная длина пути торможения, м:

S=V2/R=0,552/1,7=0,17

Фактическая длина пути торможения, м:

Sф=0,5*v*tт=0,5*0,55*3,66=1,0065 >1м

Выбор приборов безопасности

Ограничители высоты подъема грузозахватного устройства.

В качестве исполнительных устройств этих ограничителей применяют преимущественно рычажные и шпиндельные конечные выключатели.

В мостовых и козловых кранах с приводными грузовыми тележками, а так же в стреловых кранах с подъемной стрелой при использовании рычажных выключателей к его рычагу крепят штангу которая может перемещаться в направлении движения рычага выключателя и удерживать рычаг в устойчивом положении при замкнутых контактах.

Движение штанги в боковом направлении ограничено направляющей. При подходе к крайнему верхнему положению обойма грузового крюка поднимает штангу, которая воздействует на рычаг конечного выключателя, отключает привод механизма подъема груза.

Упоры и буфера.

Тупиковые упоры, установленные на концах рельсового кранового пути, предназначены для ограничения пути передвижения крана.

Стационарный упор для рельсовых путей козловых кранов грузоподъемностью 8-15 т листовой стальной щит усиленный средними и боковым ребром.

Щит и ребра приварены к основанию. Снизу в щите имеется вырез, обеспечивающий установку упора под рельсами. К щиту болтами прикреплен амортизатор. Основание упора крепится на деревянных шпалах рельсового пути костылем, а ребро направлено к рельсу.

Буфера предназначены смягчения возможного удара грузоподъемной машины об упоры. Они могут быть выполнены эластичными, пружинными, пружинно – фрикционными и гидравлическими. В зависимости от установки буфера они могут быть подвижными, неподвижными, и комбинированными. На грузовых тележках кранов подвижные буфера закреплены на боковых сторонах рамы. Эти буфера перемещаются при работе крана вместе с крановым мостом и грузовой тележкой.

ЛИТЕРАТУРА

1. Справочник по расчетам механизмов подъемно – транспортных машин. А.В. Кузьмин, Ф.Л. Марон. Высшая школа, 1983 г.

2. Справочник по кранам. Александров М.П., Гохберг М.М., том 1,2. -Л: Машиностроение,1988.

3. Подъёмно-транспортные машины. Атлас конструкций., под ред. Александрова М.П. и Решетникова Д.Н.-М.:1987.