Средняя высота подъема груза составляет 0,5…0,8 номинальной высоты Н=9м. Примем Нср=0,8*Н=0,8*9=7,2 м.
Время установившегося движения, с:
ty=Нср/vг=7,2/0,194=37,11
Сумма времени пуска при подъеме и опускании груза за цикл работы механизма, с:
åtп=1,14+5*0,34+1*0,27+3*0,22+0,09+5*0,11+1*0,13+3*0,14=4,96
Общее время включений двигателя за цикл с:
åt=2(1+5+1+3)*ty+åtп=2*10*37,11+4,96=747,16
Среднеквадратичный момент Н*м
Тср=
= (252,942*4,96+(1832+5*972+452+3*142+1402+5*702+282+3*6,92)/747,16)=52,3где: åtп – общее время пуска механизма в разные периоды работы с различной нагрузкой, с;
åТ2сty – сумма произведений квадрата моментов статических сопротивлений движению при данной нагрузке на время установившегося движения при этой нагрузке.
åt – общее время включения электродвигателя за цикл, с.
Среднеквадратическая мощность двигателя, кВт;
Рср=Тсрп/9550=52,3*935/9550=5,12 кВт
где: Тср – среднеквадратичный момент преодолеваемый электродвигателем.
Во избежание перегрева электродвигателя необходимо, чтобы
развиваемая двигателем среднеквадратичная мощность удовлетворяла условию Рср £ Рном 13 £ 5,12 – условие соблюдается
Момент статического сопротивления на валу двигателя при торможении механизма, Н*м:
Тс=Fб*z*Dбг*hб*hт /2uт =19818*2*0,4*0,98*0,85/2*50,94=129,63
где: hт – КПД привода от вала барабана до тормозного вала;
uт – общее передаточное число между тормозным валом и валом барабана.
Необходимый по нормам Госгортехнадзора момент, развиваемый тормозом при kт=1,75*Тт=1,75*129,63=226,852 Н*м.
Из таблицы III.5.11 выбираем тормоз ТКТ – 300/200 с тормозным моментом 240 Н*м, диаметром тормозного шкива Dт=300 мм. Регулировкой можно получить требуемый тормозной момент Тт=240 Н*м.
У механизма подъема груза фактическое время торможения при опускании, с:
tп=(d*I*n/9,55(Тт-Тс))+9,55*Q*v2/n((Тт-Тс)*h= =(1,1*0,35*935/9,55(226-129))+(9,55*8000*0,1942*0,85/935(226-129)=0,41
Для среднего режима работы находим путь торможения механизма подъема груза, м:
S=vгф/1,7=0,194/1,7=0,11
Время торможения в предположении что скорости подъема и опускания груза одинаковы, с:
tтmax=S/0,5vгф=0,11/0,5*0,194=1,17>tт=0,54
Замедление при торможении, м/с2:
ат=vгф/tт=0,194/0,41=0,47
Расчет механизма передвижения крана.
Механизм передвижения крана служит для перемещения крана по рельсам.
Найдем рекомендуемый диаметр ходовых колес Dк=720 мм.
Коэффициент качения ходовых колес по рельсам m=0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.
Диаметр вала цапфы ходового колеса, мм:
Dк=0,2*720=144. Примем также kр=2,5
Общее сопротивление передвижению крана, Н:
Fпер=Fтр=kp(m+Q)g(fdk+2m)/Dk=2,5(22000+8000)*
9,81(0,020*0,14+2*0,0006)/0,720=4087,5
Статическая мощность привода при h = 0,85, кВт:
Pc=Fпер*vпер/103*h=4087*1,6/1000*0,85=7,693
где: Fпер – сопротивление передвижению крана, кг;
vпер – скорость передвижения крана, м/с;
h - КПД механизма
Т.к привод механизма передвижения крана раздельный, то выбираем двигатель приблизительно в два раза по мощности меньше расчетной. Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 111 – 6 имеющим ПВ=25% номинальную мощность Рном=4,1 кВт и частоту вращения n=870 мин-1. Момент инерции ротора Ip=0,048 кг*м2.
Номинальный момент на валу двигателя Н*м.
Тном=9550Р/n=9550*4,1/870=44,7
Частота вращения вращения ходового колеса (мин-1):
nб=60vпер/p*Dк=60*1,6/3,14*0,720=42,16
где: vпер – скорость передвижения крана;
Dк – расчетный диаметр колеса, м.
Требуемое передаточное число привода:
U=n/nк=870/42,46=20,48
Поскольку в приводе механизма перемещения крана должно быть установлено два одинаковых редуктора. Выбираем редуктор типа ВК – 475 передаточное число up=19,68 и Pр=8,3 кВт.
Номинальный момент передаваемый муфтой двигателя, Н*м
Тм=Тс=FперDк/2uрh=2043*0,720/2*19,68*0,85=43,98
Расчетный момент для выбора соединительной муфты, Н*м:
Тм=Тмном*k1*k2=43,98*1,2*1,2=62,3
Выбираем по таблице III.5.6 втулочно – пальцевую муфту c крутящим моментом 63 Н*м с диаметром D=100 мм,
Момент инерции муфты, кг*м2:
Iм=0,1*m*D2=0,1*2*0,1=0,002
Фактическая скорость передвижения крана, м/с:
vперф=vпер*u/up=1,6*20,48/19,68=1,66 – отличается от стандартного ряда на допустимую величину.
Примем коэффициент сцепления ходовых колес с рельсами j=0,12
коэффициент запаса сцепления kj=1,1.
Вычисляем максимально допустимое ускорение крана при пуске в предположении, что ветровая нагрузка Fp=0, м/с2
amax=[(zпр((j/kj)+(f*dk/Dk))/z)-(2m+f*dk)kp/Dk)*g=
=(2((0,12/1,1)+(0,02*0,144/0,720))/4-
-(2*0,0006+0,02*0,144)*2,0/0,720)*9,81=0,66
где: zпр- число приводных колес;
z – общее число ходовых колес;
j - коэффициент сцепления ходовых колес с рельсами: при
работе на открытом воздухе j=0,12
f – коэффициент трения (приведенной к цапфе вала) в подшипниках
опор вала ходового колеса
m - коэффициент трения качения ходовых колес по рельсам м;
dk – диаметр цапфы вала ходового колеса, м:
kp – коэффициент, учитывающий дополнительное сопротивления от трения реборд ходовых колес
Средний пусковой момент двигателя, Н*м:
Тср.п=(ymax+ymin)*Tном/2=(2,25+1,1)*43,98/2=93,66
где: ymin- минимальная кратность пускового момента электродвигателя:
ymin=1,1…1,4
Наименьшее допускаемое время пуска по условию сцепления, с:
tдоп=v/amax=1,66/0,66=2,515
Момент статических сопротивлений при работе крана без груза, Н*м:
Тс=F’перDк/2uрh=2445,96*0,72/2*19,68*0,85=52,6
Момент инерции ротора двигателя Iр=0,048 кг*м2 и муфты быстроходного вала Iм=0,002
I=Ip+Iм=0,048+0,002=0,050 кг/м2
Фактическое время пуска механизма передвижения без груза, с:
tп=(d*I*n/9,55(Тср.п-Тс))+9,55*Q*v2/n((Тср.пТс)*h=
=(12*0,05*870/9,55(93,66-52,6))+9,55*11000*1,662/870(93,66- 52,6)*0,85=7,95 с
Фактическое ускорение крана без груза, м/с2
аф=Vпер/tп=1,66/7,95=0,208<amax=0,66 м/с2
Проверяем суммарный запас сцепления. Для этого найдем:
А) суммарную нагрузку на привод колеса без груза, Н:
Fпр=m*zпр*g/z=2*22000*2*9/4=107910
Б) сопротивление передвижению крана без груза, Н: F’пер=kp*m*g(f*dk+2m)/Dk=2*22000*9,81*(0,02*0,144+2*0,0006)/0,720=
= 2445,96
Определим фактический запас сцепления:
kj=Fпр*j/F’пер+mg((a/g)-zпр*f*dk/z*Dk)=
=107910*0,12/2445,96+22000*9,81((0,208/9,81)-2*0,02*0,144/4*0,72)=1,34>1,2
Определение тормозных моментов и выбор тормоза. Максимальное допустимое замедление крана при торможении, м/с2:
amaxт=((zпр((j/kj)-(f*dk/Dk))/z)+(2m+f*dk)/Dk)*g=((2((0,12/1,1)-(0,02*0,144/0,720))/4)+(2*0,0006+0,02*0,144)/0,720)*9,81=0,571
По таблице принимаем амахт=0,15 м/с2
Время торможения крана без груза, с:
tt=Vфпер/амахт=1,66/0,15=11,06
Сопротивление при торможении крана без груза, Н:
Fтрт=mg(f*dk+2m)/Dk=22000*9,81(0,02*0,144+2*0,0006)/0,720=1222,98
Момент статических сопротивлений на тормозном валу при торможении крана, Н*м:
Тст=Fттр*Dk*h/2*up=1222,98*0,720*0,85/2*19,68=19,01
Момент сил инерции при торможении крана без груза, Н*м:
Тинт=(d*I*n/9,55*tт)+9,55*m*v2*h/n*tт=
=(1,2*0,05*870/9,55*11,06)+9,55*22000*1,662*0,85/870*
*11,06=51,63
где: tт- время торможения механизма, с:
Расчетный тормозной момент на валу тормоза, Н,м:
Трт=Тинт – Тст=51,63-11,06=40,57
Из таблицы III 5.13 выбираем тормоз типа ТКГ – 160 с диаметром тормозного шкива Dт=160 мм и наибольшим тормозным моментом Тт=100 Н*м, который следует отрегулировать до Тт=41 Н*м.
Минимальная длина пути торможения, м:
S=V2/R=1,662/0,9=3,06
Фактическая длина пути торможения, м:
Sф=0,5*v*tт=0,5*1,66*11,06=9,17
Расчет механизма передвижения грузовой
тележки.
Найдем рекомендуемый диаметр ходовых колес Dк=360 мм.
Коэффициент качения ходовых колес по рельсам m=0,0006 м. Коэффициент трения в подшипниках качения ходовых колес f=0,02.
Диаметр вала цапфы ходового колеса, мм:
Dк=0,2*360=72 Примем также kр=2,5
Общее сопротивление передвижению крана, Н:
Fпер=Fтр=kp(m+Q)g(fdk+2m)/Dk=2,5(3200+8000)*
9,81(0,02*0,072+2*0,0006)/0,36=2014,31
Статическая мощность привода при h = 0,85, кВт:
Pc=Fпер*vпер/103*h=2014*0,63/1000*0,85=1,49 кВт.
где: Fпер – общее сопротивление передвижению тележки, Н;
vпер – скорость передвижения грузовой тележки, м/с;
h - КПД механизма
Из таблицы III.3.5 выбираем крановый электродвигатель MTF – 011-16 имеющим ПВ=25% номинальную мощность Р=1,7 кВт и частоту вращения n=835 мин-1. Момент инерции ротора Ip=0,02 кг*м2.
Номинальный момент на валу двигателя Н*м: