mр=3.87 10-4 Па с
n=3.87 10-4/1.013 103 =3.82 10-7 м2/с
Поверхностное натяжение s при температуре tкип определяем для воды, т.к. концентрация MgCl2 достаточно мала /2; табл XXXIX/
s=0,05995 Н/м
Коэффициент теплопроводности l для раствора при tкип и хкон (Приложение 2, п.4), Вт/(м К):
l=0.662 Вт/(м2.К)
Вт/м2 ККоличество теплоты q2, передаваемое от внутренней стенки к раствору:
q2=aкип (tст2- tкип) (22)
q2=2.238 103 (103.475-94.168)=2.083 104 Вт
Определим значение выражения:
и если Е< 0.05 то расчёт коэффициентов теплоотдачи выполнен верно.
Е=(2.14 104-2.083 104)/ 2.083 104=0.027
Тогда:
Вт/(м2 К) (23) м23.1.4 Выбор выпарного аппарата по каталогу.
Произведём выбор аппарата по каталогу / 3, приложение 4.2 /. Для этого найденную площадь поверхности теплообмена следует увеличить на 10-20 %, для обеспечения запаса производительности.
Fв.п.=1.2 F
Fв.п.=1.2 358.774=430.493 м2
где Fв.п. – площадь выпарного аппарата с учётом запаса производительности, м2;
Выберем выпарной аппарат с естественной циркуляциейи соосной греющей камерой. Наиболее подходящим вариантом данного аппарата является аппарат с площадью теплопередачи 450 м2;
Таблица 1. Основные размеры выпарного аппарата (по ГОСТ 11987-81)
F, м2 | D, мм не менее | D1, мм не более | D2, мм не более | Н, мм Не более | М, кг не более |
l= 6000 мм | |||||
450 | 1600 | 4000 | 1000 | 18000 | 31500 |
F – номинальная поверхность теплообмена;
D – диаметр греющей камеры;
D1 – диаметр сепаратора;
D2 – диаметр циркуляционной трубы;
Н – высота аппарата;
М – масса аппарата;
3.2. Ориентировочный расчет теплообменного аппарата для подогрева исходного раствора перед подачей в выпарной аппарат.
Рис. 1 Температурная схема
где t’нач – начальная температура исходного раствора (по заданию)
Dtбол,Dtмен – большая и меньшая разность температур соответственно, °С; tнач – температура исходного раствора после подогревателя, °С ;
Dtб = tконд.гр.п – t’нач (24)
Dtб = 124,168 – 35 = 89.168 °С
Dtм = tконд.гр.п – tнач (25)
Dtм = 124,168 – 86.668 = 37.5 °С
Значение средней движущей силы рассчитывается по формуле:
(26) °ССредняя температура раствора:
tср.р = tконд.гр.п – Dtср (27)
tср.р =124.168 –59.65=64.518°С
3.2.2. Тепловой баланс подогревателя.
Расход теплоты на подогрев исходного раствора от температуры t’нач до температуры tнач найдем по формуле (10), приняв значение теплоёмкости раствора при температуре и концентрации Хнач ( Приложение 2, п.3 )
Q=4.5 4.141 103 (86.668-35)=9.628 105 Вт
Расход греющего пара Gгр.п. найдём по формуле:
(28)где r – удельная теплота парообразования, Дж/кг;
c - степень сухости пара;
c=0.95
Удельная теплота парообразования при температуре tконд.гр.п. / 2, табл. LVI /:
r=2205x103 Дж/кг
кг/с3.2.3. Ориентировочный расчет подогревателя.
Зададимся ориентировочным коэффициентом теплопередачи от конденсирующегося пара к жидкости / 2, табл. 4.8 /:
Кор=850 Вт/(м2 К)
Рассчитаем ориентировочную площадь теплообмена по формуле (23);
м2Для обеспечения интенсивного теплообмена необходимо обеспечить турбулентный режим течения, он достигается при Re более 10000. Зададимся:
Re=10000
Скорость течения раствора в аппарате с диаметром труб d=20 мм рассчитаем
по формуле:
(29)где wтр – скорость течения раствора в трубном пространстве м/с;
dэкв – эквивалентный диаметр, м;
Значения коэффициентов вязкости раствора mр и плотности rр возьмём при температуре tср.р.и концентрации Хнач ( Приложение 2, п.1,п.2 )
м/сПроходное сечение трубного пространства Sтр,м2:
(30) м2Для того, чтобы подобрать наиболее подходящий вариант подогревателя необходимо произвести уточнённый расчёт нескольких близких аппаратов. Примем диаметр труб d=25 мм:
м/с м23.2.4. Параметры теплоносителей необходимые для уточнённого расчёта подогревателя
Параметр | Горячий | Холодный |
Название Теплоносителя | Водяной пар | Водный р-р MgCl2 |
Тепловой процесс | конденсация | нагревание |
Расход, кг/с | 0,45977 | 4,5 |
Температуры: | ||
Конденсации / начальная | 124,168 | 35 |
Конечная | 86,668 | |
Средняя | 64,518 | |
Плотность, кг/м3 | 937,6 | 994 |
Вязкость, Па*с | 0,000222 | 0,000469 |
Теплопроводность, Вт/м*К | 0,677 | 0,672 |
Теплоёмкость, Дж/кг*К | 4193 | |
Коэф. Объёмн. Расшир., 1/К | 0,000551 | |
Производные по температуре: | ||
Вязкости | -0,0000022049 | -0,000006293 |
Теплопроводности | -0,0004803 | 0,0009253 |
теплоёмкости | 3,69 | |
Теплота конденсации, Дж/кг | 2205000 |
3.2.5 Ориентировочный выбор подогревателя.
Для обеспечения турбулентного режима номинальная площадь проходного сечения должна быть меньше рассчитанной. Коэффициент теплоотдачи от конденсирующегося пара не зависит от режима течения в межтрубном пространстве, следовательно, необязательно рассчитывать скорость движения пара и проходное сечение межтрубного пространства
Выбор теплообменных аппаратов производится по проходному сечению трубного пространства / 3, табл. 2.3 /.
3.2.6. Параметры подогревателя необходимые для уточнённого расчёта.
Параметр / № аппарата | 20 мм | 25 мм |
Тип | Кожухотрубчатый | Кожухотрубчатый |
Положение | Горизонтальный | Горизонтальный |
Перегородки в м-тр простр-ве | Есть | Есть |
Расположение труб | шахматное | шахматное |
Кол-во труб | 166 | 100 |
Рядов труб | 14 | 10 |
Ходов | 2 | 2 |
Внут. Диам. Кожуха, мм | 400 | 400 |
Трубы, мм | 20*2 | 25*2,5 |
Проходное сечение трубного простр., м2 | 0,017 | 0,017 |
Проходное сечение межтрубного простр., м2 | 0,03 | 0,025 |
Термич. Сопрот. Загрязнений | 0,00071 | 0,00071 |
Теплопров. Мат-ла труб, Вт/м*К | 46,5 | 46,5 |
3.2.7. Уточнённый расчет подогревателя на ЭВМ.
По данным п. 3.2.4.-3.2.6. Произведём уточнённый расчёт подогревателя результаты расчёта представлены в (приложении 3).
3.2.8. Расчёт гидравлического сопротивления кожухотрубчатых теплообменников
Скорость жидкости в трубах:
(31) Скорость раствора для обоих подогревателей wтр, м/с: м/сКоэффициент трения l рассчитывается по формуле / 3, ф-ла. 2.31 / :
(32)где е – относительная шероховатость труб;
е=D/dэкв (33)