При введении 4-4,5 % Со в Ni коэффициент k заметно увеличивается за счет резкого уменьшения энергии магнитной кристаллической анизотропии Е при 20 °С: от -5 мДж/см3 до 0. При этом магнитострик-ция А.,, согласно ряду публикаций [1, 2], снижается от - (35-37)-10-6 ( для чистого никеля) до -(28-33)-10-6 Относительно небольшая магнитострикция "компенсируется" увеличением коэффициента k от 0,25 до 0,44 соответственно. Двойной сплав Ni - 4 % Со имеет невысокие прочность (на уровне чистого никеля) и электросопротивление, что вызвало необходимость разработки более сложных сплавов на основе этой системы [1, 3, 4]. Один из известных сплавов такого рода - сплав "никоей", содержащий 2,5 % Со и 2 % Si -нашел применение в гидроакустике [4]. Следует отметить, что хотя введение третьих компонентов (Si, Cr) и
повышает прочность и электросопротивление, но приводит к снижению магнитострикции.
Кардинальное повышение магнитострикции возможно за счет использования ее кристаллографической анизотропии. Так, у чистого никеля магнитострикция максимальна в направлении <100> и минимальна в направлении <111> (l = -55-10 -6 и -27-10 -6соответственно). Ранее уже предлагалось использовать для изготовления магнитострикционных преобразователей никелевую ленту с кубической текстурой [5], однако в то время не удалось создать промышленную технологию ее производства. Проводятся также работы по усовершенствованию альфера: повышение его пластичности путем специального легирования, совершенствование технологии и увеличение магнитострикции за счет создания оптимальной текстуры [б].
В последние годы институт "Гипроцветметобработка" при участии Акустического института им. Н.Н. Андреева разработал сплавы на основе системы Ni - 4 % Со, а также технологию получения из них магнитострикционной ленты с сильной кубической текстурой. Влияние отдельных легирующих добавок на магнитные и механические свойства подробно изучены нами ранее [7, 8]. Исходя из данных [7, 8] с учетом приведенных выше требований были выбраны две системы для создания магнитострикционных сплавов:
Ni-Co-W и Ni-Co-Mn. Добавки марганца и вольфрама обеспечивают упрочнение твердого раствора и рост электросопротивления при сравнительно небольшом снижении магнитострикции. Одновременно оба компонента стабилизируют текстуру {100} <001>, что позволяет получить максимальную магнитострикцию в направлении прокатки ленты.
В настоящей работе' оптимизировали состав магнитострикционных сплавов. Основная задача исследования - определение области составов, где энергия анизотропии E = 0. Все эксперименты проводили при комнатной температуре.
Энергию анизотропии Е измеряли методом вращающегося феррозонда по величине магнитомеханическо-го момента М [9] при одновременном контроле текстуры. Из кривой М =¦(a) при вращении зонда над поверхностью ленты на угол от 0 до 2p с помощью электронного гармонического анализатора выделяли вторую и четвертую гармоники Аг и А4. По данным [10], при кубической текстуре .
Выплавляли ряд двойных и тройных сплавов системы Ni-Co-Mn, у которых варьировали содержание Со и Мn в пределах 0-6 % с шагом 2 %. Это соответствует схеме факторного эксперимента. Слитки массой 2 кг получали в вакуумной индукционной печи. После горячей и холодной прокатки с последующим отжигом из этих слитков получали ленты с сильной и острой текстурой {100} <001> в отожженном состоянии, рассеяние не превышало 5° (0,1). Амплитуду гармоник А4 калибровали по ленте чистого никеля с сильной кубической текстурой и энергией анизотропии Е= -5 мДж/см3.
Для трехкомпонентной системы Ni-Co-Mn результаты измерения Е (Дж/см3) в зависимости от концентрации компонентов аппроксимированы уравнением второго порядка.
Из уравнения (1) получали формулы погрешностей, связанных со случайными колебаниями состава:
dE/d[Co} » 16,7 - 2,5[Mn] - 2,2[Со];
dE/d[Mn] » 14,6 - 2.5[Со] - 2.6[Mn].
По этим уравнениям для ряда составов были вычислены значения энергии магнитной кристаллической анизотропии Е и ее производных по изменению концентраций компонентов сплава
Е характеризует "устойчивость" Е по отношению к колебаниям химического состава сплава. Вычисления выполнены с шагом по концентрации Со и Мп 0,25-1 %. Кроме того, рассчитывали величину l исходя из линейной зависимости от концентрации компонентов.
Переходя к практическому выбору сплава, мы приняли, что сплав должен удовлетворять условиям:
T.e. магнитострикция должна быть достаточно велика, а магнитная анизотропия по крайней мере на порядок меньше, чем у чистого никеля. В то же время желательно повысить устойчивость E т.е. добиться возможного уменьшения Е. Как видно в изученной области составов изменяется в 4-6 раз. Минимальные значения Е находятся в стороне от линии наименьшей анизотропии, однако достаточно малую величину Е можно обеспечить и при Е = 0. Приведенные выше условия выполняются у сплава НКоМц4-1, содержащего 3,5 % Со;
1 % Мп, остальное - Ni. Такой сплав имеет E = 0,7 мДж/cм3-%) (здесь предполагается "усредненный" процент добавки).
Колебания концентрации кобальта, вызываемые угаром и ликвацией, значительно меньше, чем марганца. С другой стороны,Ec, > Е'm, так что в целом колебания содержания обеих добавок дают априори близкий эффект. Аналогичное рассмотрение устойчивости магнитострикции по отношению к составу приводит к тривиальному результату: поскольку концентрационная зависимость магнитострикции линейна, ее производные во всей области составов постоянны, следовательно нет оснований предпочесть по такому признаку одни составы другим.
При допустимых отклонениях от номинального состава +0,2-0,4 % обоих компонентов, вполне осуществимых на практике, изменение \, не превышает ± 1 • 10-6, а колебаниясоответствуют ±0,1 мДж/см3, т.е. на уровне ошибок измерения. Данный состав зафиксирован в технических условиях на ленту из сплава НКоМц4-1.
Кубическая текстура в отожженной ленте, обеспечивающая максимальную магнитострикцию в направлениях прокатки, поперечном и нормальном к поверхности ленты, одновременно приводит к получению минимальных скорости звука и модуля упругости в этих же направлениях, совпадающих с <100>. Это позволяет контролировать качество ленты по модулю нормальной упругости Е. Нами показано, что А., и 2?хорошо коррелируют, их связь определяется эмпирической зависимостью.
Согласно действующим техническим условиям, лента должна иметь в отожженном состоянии Е < 150 кН/мм2, удельное электросопротивление сплава р = 12 мкОм-см. Следует отметить, что малое значение модуля упругости позволяетуменьшить габариты резонансных ультразвуковых излучателей, т.е. сэкономить материал. Электросопротивление такой величины при толщине ленты 0,2-0,4 мм позволяет избежать потери на вихревые токи при частотах до 20 кГц. Сплав НКоМц4-1 рекомендуется для изготовления мощных акустических излучателей, работающих в килогерцевом диапазоне частот. При этом обеспечивается предельная мощность в 1,5 раза выше, чем у излучателей из, технического никеля, и одновременно высокий КПД. Такие преобразователи применяются, в частности, в гидроакустике.
Магнитострикционный материал для ультразвуковых преобразователей, работающих в диапазоне более высоких частот, должен иметь повышенное электросопротивление. Методика поиска
и оптимизации соответствующего состава в целом аналогична приведенной выше. Для этой цели нами предложен никелевый сплав НКоВоЗ-3 (3,25 % Со и 3 % W), подробное исследование которого здесь не приводится. Сплав НКоВоЗ-3 может быть эффективно применен в установках ультразвуковой технологии, например в ваннах очистки, в ультразвуковых хирургических инструментах, для интенсификации химических процессов и т.д. Сплав НКоВоЗ-3 выпускается в виде тонкой ленты.
Наконец, для магнитострикторов, работающих при низких частотах (порядка сотен герц), и особенно при повышенных температурах нет необходимости в добавках кобальта. При нагреве до 150-200 °С для чистого никеля Е переходит через 0. Для этих условий эксплуатации разработан сплав, не содержащий кобальта.
Текстурованные магнитострикционные ленты из никелевых сплавов производят по техническим условиям АО "Экспериментальный завод качественных сплавов" (г. Москва).
Сравнительные характеристики магнитострикцион-ных материалов приведены в таблице, где наряду с новыми сплавами на основе никеля указаны традиционные сплавы, включая альфер Ю13.
Выводы. 1. Новые магнитострикционные сплавы на основе никеля, прежде всего типа Ni - 4 % Со, по акустическим характеристикам не уступают традиционным материалам, используемым в источниках ультразвука, а по механическим и антикоррозионным свойствам - их превосходят.
2. Предложен критерий устойчивости свойств относительно колебаний химического состава: минимум производной данного свойства, в частности E по концентрации компонентов. Этот фактор целесообразно принимать во внимание при разработке новых материалов, особенно с использованием методов математического планирования эксперимента.