Наиболее высокие прочностные свойства достигаются после старения в интервале температур 450— 550 °С, минимальные (по абсолютной величине) значения ТКМУ — при 525—575 °С. Оптимальное сочетание прочности и элинварности удается получить, когда эти интервалы перекрываются, т.е. после старения при 525-550 °С. Сплав Н25Т2М имеет аналогичный характер изменения свойств.
На экономнолегированных сплавах Н23ТМ, Н25Т2М после закалки и старения при 525—550 °С 2 ч (без предварительной деформации) получен следующий комплекс прочностных, упругих и термоупругих свойств.'Исследованные сплавы существенно превосходят известные аустенитные сплавы типа 44НХТЮ (Н44Х5Т2Ю) [1, 2] по уровню прочностных и упругих свойств, но при этом содержат на 20 % меньше никеля. На сплавах, подвергнутых предварительной холодной деформации, прочностные характеристики возрастают примерно на 200 Н/мм2, при этом ТКМУ не изменяется. Следует отметить, что указанные свойства достигаются (как в деформированном, так и в недеформированном состоянии) на прутках крупных сечений диаметром 20—100 мм.
Рассмотрим механизм структурных процессов, обеспечивающих элинварные свойства. Известно [I], что элинварные свойства (т.е. аномально низкие значения температурного коэффициента модуля упругости ТКМУ) имеют аустенитные сплавы на Fe—Ni-основе, содержащие 29,8—44,4 % Ni. В работе [3] установлено, что сплав 21НКТМ в мартенситном состоянии имеет ТКМУ = -(200-250)- 10-6 , a после старения в двухфазной (a + g)-области значения этого коэффициента снижаются до —(30—50) х х 10-6K', что обусловлено образованием стабильного аустенита, обогащенного никелем до 30 %.
Можно сделать предположение о природе элинварности сплавов типа Н23ТМ. Вероятно, элинварные свойства сплава Н23ТМ являются результатом компенсации больших отрицательных значений ТКМУ мартенсита и больших положительных значений ТКМУ аустенита: -(200-250) • 10-6и +(200-250) х х 10 -6 ЛГ соответственно. Достижение больших положительных значений ТКМУ аустенита сплава Н23ТМ является следствием его существенного обо-
гащения никелем. Это, вероятно, обусловлено протеканием двух процессов . Одним из них является обратное а -g-превращение,
обеспечивающее образование стабилизированного аустенита. В соответствии с диаграммой состояния в сплавах Fе—(21—23) % Ni после нагрева при температурах 500—600 °С формируется у-фаза с повышенным (до 27—29 %) содержанием никеля. Однако такого обогащения никелем недостаточно для реализации элинварных свойств. Очевидно, важную роль в существенном снижении ТКМУ играет второй процесс, связанный с растворением выделившихся интерме-таллидов и дополнительным обогащением аустенита никелем. После старения сплава Н23ТМ в интервале 450—500 оС выделяются частицы Ni Ti, равномерно распределенные по объему мартенсита, в том числе и вблизи границ кристаллов. Первые тонкие прослойки аустенита образуются на границах кристаллов у-фазы, характеризующихся дефектностью и пониженной энергией зарождения. Повышение температуры старения до 550 — 575 °С сопровождается ростом толщины пластин и последовательным поглощением ранее выделившихся вблизи границ высокодис-персных частиц интерметаллида< Следует отметить, что размер пластин (50 — 200 им) существенно превышает размер частиц (5—20 нм). Обнаружено, что частицы отсутствуют в этих пластинах, т.е. растворены в у-фазе. Можно предположить, что на начальных стадиях образования аустенита происходит частичное растворение фазы NiТi (обогащенной никелем) , что приводит к появлению концентрационных неоднородностей и локальному увеличению содержания никеля. Старение при температурах выше 600 оС вызывает более полное растворение частиц интерме-таллидов в аустените, выравнивание состава по никелю и, как следствие, к увеличению значения ТКМУ.
Таким образом, элинварные свойства мартенситно-аустенитных сплавов типа Н23ТМ являются следствием образования стабилизированного аустенита при старении и обеспечиваются различием ТКМУ мартенсита и аустенита, примерно одинаковых по абсолютной величине, но противоположных по знаку. Повышение ТКМУ g-фазы связано с двумя причинами: обогащением ее по никелю в соответствии с диаграммой состояния (на ранних стадиях а - Y-превращения) и дополнительным локальным увеличением содержания никеля при неполном растворении никельсодержащих интерметаллидов. Характерно, что наиболее высокие элинварные свойства сплава Н23ТМ реализуются после старения при 525—560 °С 2 ч, обеспечивающего получение 40—50 % ферромагнитного аустенита и неполное растворение интерметаллвда Ni Ti (аустенит этого сплава, состаренного при 550 "С 2 ч, имеет точку Кюри T=165 С).
Следует отметить, что в работе оценивали ТКМУ и количество g-фазы двойных Fe—Ni-сплавов в различных температурных интервалах. После закалки , обработки холодом сплавы Fe—(21—25) % Ni имеют мартенситную структуру. Нагрев сплавов в интервале 500—650 °С приводит к образованию 20— 60 % аустенита. Однако значения ТКМУ изменяются M, после старения в указанном температурном интервале. Следовательно, двойные железоникелевые сплавы, содержащие 21—25 % Ni, практически не обладают элинварными свойствами. Содержание такого количества никеля в сплаве является необходимым, но недостаточным условием для реализации элинварности. Для существенного снижения ТКМУ сплавы Fe—(21—25) % Ni должны дополнительно легироваться элементами, образующими никельсодержащие интерметаллидные фазы при старении, которые будут растворяться при последующем нагреве и обеспечивать локальное повышение содержания Ni в аустените.
В связи с тем, что элинварные свойства обнаружены в настоящей работе в сплавах типа Н23ТМ, а также ранее в сплаве 21НКМТ [3], можно отметить следующее. Упрочнение указанных сплавов сопровождается выделением интерметаллвда Ni Т1. Низкий ТКМУ обусловлен растворением этой никельсо-держащей фазы и локальным обогащением аустенита по никелю. Известные мартенситно-стареющие сплавы на основе Fe—Ni могут быть предположительно разделены на две группы. Очевидно, элинварными свойствами будут обладать сплавы I группы на основе Fe—Ni, легарованные одним из элементов Та, Nb, V, Si, A1, упрочнение которых связано с формированием никельсодержащих интерметаллидных фаз, а именно Ni Nb; Ni Та;NiV; NiAl [5, 7, 8]. Высокими термоупругими свойствами, по-видимому, будут обладать сплавы, имеющие комбинацию этих и других интерметаллидов. Для сплавов Я группы, в которых при старении выделяются только фазы, не содержащие никель, типа Fe Mo, Fe W [5] и др., а также для двойных нестареющих сплавов Fe—(21—25) % Ni вероятность проявления элинварных свойств весьма низка.
Выводы. 1. Экономнолегированные бескобальтовые сплавы на основе Fe—(23—25) % Ni обладают элинварными свойствами после нагрева в двухфазной мартенситно-аустенитной области.
2. Высокий уровень прочности и упругости сплавов Н23ТМ, Н25Т2М обусловлен выделением при старении в мартенсите дисперсных частиц интерметаллидной фазы Ni Т1, а элинварные свойства связаны с образованием 40—55 % стабилизированного аустенита.
3. Низкий температурный коэффициент модуля упругости сплавов на основе Fe—Ni—Ti является результатом компенсации больших отрицательных значений ТКМУ мартенсита и больших положительных значений ТКМУ аустенита. Высокие показатели ТКМУ аустенита обусловлены повышенным содержанием никеля в нем на ранних стадиях к - у-превра-щения и локальным обогащением у-фазы при неполном растворении никельсодержащего интерметалли-да Ni Ti.
4. На бескобальтовом сплаве Н23ТМ после закалки и старения (без деформации) получен следующий комплекс свойств
d= 1000-1100 Н/мм2, ТКМУ = -(10-30)- 10 -6 К. После предварительной холодной деформации (30 %) механические свойства сплава Н23ТМ повышаются (без изменения ТКМУ) Указанные свойства достигаются (как в деформированном, так и в недеформированном состоянии) на прутках крупных сечений диаметром 20—100 мм.
5. Исследованный сплав существенно превосходит известные аустенитные сплавы типа 44НХТЮ (Н44Х5Т2Ю) по уровню прочностных и упругих свойств, но содержит никеля на 20 % меньше.
Магнитострикционные сплавы на основе никеля
При разработке нового магнитострикционного сплава необходимо выполнение следующих условии:
достижение высоких магнитострикционных характеристик, повышение механических свойств и электросопротивления, снижение скорости звука по сравнению с аналогичными характеристиками никеля и Ni -4%Со-сплава. Из магнитострикционных характеристик наибольшее значение имеют два параметра: магнито-стрикция насыщения (т.е. предельно достижимое относительное изменение размеров образца при статическом намагничивании) \, и динамический коэффициент электромеханической связиk, определяющий степень преобразования энергии переменного электрического токав механическую. Магнитострикция насыщения X, характеризует предельно достижимую мощность излучающего преобразователя, коэффициент электромеханической связи k - электроакустический КПД. Предельная мощность преобразователя зависит также от механической прочности материала, а КПД -от его электросопротивления. Требования к магнито-стрикционным сплавам конечно не ограничиваются перечисленными параметрами. Они включают также магнитную восприимчивость, технологичность при штамповке, сопротивление усталости, коррозионную стойкость в рабочих средах и др.