Глава 1
Изготовление заготовок литьем металлов.
1.Сущность процессов литья металлов и задача литейного производства.
Литьем (или литейным производством) называют метод производства, при котором изготовляют фасонные заготовки деталей путем заливки расплавленного металла в заранее приготовленную литейную форму, полость которой имеет конфигурацию заготовки детали. После затвердевания и охлаждения металла в форме получают отливку-заготовку детали.
Основной задачей литейного производства является изготовление литейных сплавов отливок, имеющих разнообразную конфигурацию с максимальным приближением их формы и размеров к форме и размерам детали (при литье невозможно получить отливку, форма и размеры которой соответствует форме и размерам детали).
Инструментом литейного производства является литейная форма - приспособление образующее рабочую полость, при заливке которой расплавленным металлом и после охлаждения получают отливку.
По степени использования формы делят на :
разовые;
полупостоянные;
постоянные;
Разовые формы служат для изготовления только одной отливки и изготовляют их из кварцевого песка, зерна которого соединены каким-либо связующим веществом.
Полупостоянныеформы - это формы в которых получают несколько отливок (до 10-20), такие формы изготовляют из керамики.
Постоянные формы - формы, в которых получают от нескольких десятков до нескольких сотен тысяч отливок. Такие формы изготовляют обычно из чугуна или стали.
Различные по форме, размерам и точности отливки из различных сплавов невозможно наиболее экономично получить одним и тем же способом. Экономически целесообразно изготовлять отливку с определенными качественными свойствами каким-либо одним или двумя способами. В настоящее время в производстве используют около 15 способов литья, а в производстве приборов применяют следующие способы литья:
1) литье в песчаные формы ("землю");
2) литье в ЖСС (жидкие самоотвердевающие смеси);
3) литье в оболочковые формы;
4) литье в кокиль (металлические защищенные формы);
5) литье по выплавляемым моделям;
6) литье под давлением;
7) центробежное литье;
2. Отливки-заготовки деталей АСУ и ЭВМ.
Отливки в АСУ и ЭВМ широко используются там, где необходимо обеспечить высокие требования к
прочности и жесткости:
-рамки ТЭЗов;
-панелей ТЭЗов;
-кронштейны и угольники рам;
-корпуса различных разъемов в процессоре;
теплопроводности:
-корпуса реверсных электродвигателей НПМ и других электродвигателей;
-радиаторы в ячейках питания для транзисторов, диодов в процессоре и внешних устройствах.
Масса отливок колеблется от нескольких граммов до нескольких десятков килограммов.
Конфигурация отливок может быть любой, она определяется возможностью изготовления технологической оснастки - формы, литейными свойствами сплавов, способом литья. Выбор способа литья в зависимости от конфигурации отливки основывается чаще всего на экономических соображениях, реже из условия высокой производительности и др.
3. Основные этапы производства отливок.
Последовательность производства отливок рассмотрим на примере литья в песчаные формы. Этот способ изучается в учебных мастерских:
1. Разработка чертежа отливки.
2. Изготовление модели и стержневого ящика.
3. Изготовление формы из заранее приготовленной формовочной смеси.
4. Сборка формы (установка ранее изготовленного из стержневой
смеси стержня и соединение частей формы).
5. Заливка формы ранее расплавленным сплавом или металлом.
6. Охлаждение формы с отливкой.
7. Освобождение отливки от формы.
8. Отрезка литников и прибылей
9. Отжиг отливок.
10. Термообработка.
11. Контроль.
4. Основные свойства литейных сплавов и влияние их на качество
отливок.
К основным свойствам литейных сплавов относят следующие:
1. Жидкотекучесть - это способность сплава в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке. Жидкотекучесть определяют по стандартной пробе в виде канала определенной длины и диаметра с литниковой чашей (рис 1).
Рис.1. Простейшая проба на жидкотекучесть.
Жидкотекучесть определяют по длине пути, пройденному жидким металлом до затвердевания. Чем длиннее пруток, тем больше жидкотекучесть. Высокую жидкотекучесть (>700 мм) имеют силумины, серый чугун, кремнистая латунь;
среднюю жидкотекучесть (350-340 мм) имеют углеродистые стали, белый чугун, алюминиево-медные и алюминиево-магниевые сплавы;
низкую жидкотекучесть имеют магниевые сплавы.
С повышением температуры сплава жидкотекучесть увеличивается.
2. Кристаллизация - это процесс перехода от жидкого состояния расплава к твердому состоянию с образованием структуры. Кристаллизация сплава происходит в направлении перпендикулярном поверхности теплоотвода. Скорость кристаллизации меняется от максимальной у поверхности до минимальной в центре стенки отливки (рис.2).
Рис. 2. Изменение кристаллической структуры по сечению отливки.
1 - литейная “корка”. 2 - столбчатые кристаллы.
3 - крупнозернистые кристаллы. 4 - литейная форма.
Для создания равномерной кристаллической структуры желательно уменьшить толщину отливки. Наилучшие свойства имеют сплавы при мелкокристаллической (мелкозернистой) структуре. Изменением скорости охлаждения невозможно достигнуть равномерной структуры. С целью получения мелкозернистой структуры в сплавы вводят особые добавки - модификаторы для силумина АЛ -2 - натрий, для серого чугуна - магний.
Процесс кристаллизации и кристаллическое строение отливки зависят от ее формы, температуры заливки сплава, от марки сплава, от вида литейной формы. На рис.2 показана качественная картина влияния этих параметров на кристаллическое строение отливки.
3. Усадка - свойство металлов и сплавов уменьшать свои размеры и объем при затвердевании и охлаждении. При затвердевании отливки выделяются также ранее растворенные расплавом газы. Усадка может способствовать образованию усадочных раковин, а выделяющиеся при охлаждении отливки газы способствуют образованию газовых раковин. Различают линейную и объемную усадку.
Линейнаяусадка изменяет линейные размеры отливки по сравнению с соответствующими размерами формы и при неблагоприятной конструкции заготовки образует трещины и коробление из-за торможения усадки в отдельных местах.
Объемная усадка приводит к образованию усадочных раковин (рис.3)
Рис. 3. Схема образования усадочной раковины (а - г) и схема вывода усадочной раковины в прибыль (д).
На рис.3 представлена схема образования концентрированной усадочной раковины. Часто имеют место случаи образования рассеянных раковин. При затвердевании в полости формы есть три фазы сплава:
1) жидкая,
2) твердая,
3) жидкая и твердая или двухфазная зона.
При затвердевании в двухфазной зоне могут возникнуть рассеянные поры. Увеличение толщины твердого слоя происходит до тех пор пока в двухфазной зоне не возникает сплошной скелет из кристаллов. Теперь жидкий металл, питающий затвердевающую зону встречает значительное сопротивление своему продвижению, которое увеличивается по мере уменьшения ячеек указанного скелета. И при прекращении питания каких-либо ячеек при дальнейшем охлаждении в них возникает усадочная межкристаллическая раковина. Раковины там меньше, чем позже прекратилась связь жидкого раствора с питаемой ячейкой.
В этом случае возникает рассеянная микропористость. Эти поры нарушают сплошность металла и могут при значительных механических нагрузках являться концентраторами напряжений (как надрезы) и тем самым ухудшать механические свойства деталей.
Для уменьшения влияния на качество отливки усадочных концентрированных раковин применяют два способа:
а) одновременное затвердевание,
б) направленное затвердевание.
Одновременное затвердевание - это одновременная и равномерная кристаллизация расплава во всех частях отливки, что обеспечивается определенными условиями. Приближенно эти условия можно считать выполненными, если толщина отливки во всех ее точках неизменна или изменяется равномерно. Наилучшим образом соблюдаются эти условия при возможно меньшей толщине стенки.
При направленном затвердевании кристаллизация отливки происходит последовательно в направлении противоположном вектору отвода тепла и источнику питания жидким сплавом. При направленном затвердевании отливка получается наиболее плотной, без концентрированных раковин, которые выводятся в прибыль.
Направленное затвердевание можно осуществить несколькими путями:
а) охлаждением нижней части формы или нагревом прибыли;
б) конструкцией отливки, имеющей с постепенно увеличивающейся толщиной в направлении к прибыли;
в) подводом расплавленного металла под прибыль.
4. Поглощение газов в значительной мере зависит от вида и свойств газа, природы растворителя, температуры и давления. Если воде с повышением температуры растворимость газов уменьшается, то в жидких металлах и сплавах растворимость газов может увеличиваете с увеличением температуры.
Для уменьшения объема растворенных газов, газовых раковин и пористости применяют следующие методы: