О различной реакционной способности связей С—Н уже упоминалось раньше. К образовавшемуся таким путем макрорадикалу присоединяются молекулы мономера, т. е. возникает привитой полимер:
Одновременно с привитым полимером в системе образуется и нежелательный гомополимер.
Привитая полимеризация под действием радиационного облучения
При этом методе получения привитого полипропилена используют свободные радикалы, образовавшиеся под действием облучения, или вторично возникшие при облучении на воздухе пере-кисные группы.
В первом случае процесс прививки легче поддается контролю. Степень прививки определяется дозой облучения, величиной поверхности полимера, температурой, временем контакта мономера, его растворимостью в полимере и скоростью диффузии к реакционным центрам. В зависимости от выбранных условий прививать можно как ко всем макромолекулам полипропилена, так и только к макромолекулам поверхностного слоя изделий.
При проведении процесса в гомогенной системе полимер подвергают набуханию в мономере, а затем облучают. При этом образуется также и гомополимер вследствие инициирования полимеризации мономера. Прививка к полипропилену в растворе или в эмульсии изучена недостаточно.
Сшивание полипропилена
Выше уже упоминались методы сшивания полипропилена под действием излучения высокой энергии , прививкой различных мономеров в присутствии перекисей , прививкой полифункциональных мономеров , сшиванием хлорированного и хлорфосфорилированного полимера с бифункциональными аминами , вулканизацией хлорсульфонированного и хлорфосфорилированного полииропилена металлическими окислами. Наряду с ними широкое распространение получают сшивание и разветвление полипропилена перекисями и в особенности применение системы вулканизующих агентов перекись—сера .
При сшивании полипропилена, вызванном термическим разложением перекисей, одновременно происходит его деструкция. При низких концентрациях перекисей (до 0,05 моль/кг при температуре реакции 73° С) деструкция преобладает и поддается контролю. Выбор условий процесса зависит от величины исходного молекулярного веса, а его снижение определяется температурой, которой соответствует определенная эффективная концентрация перекиси . Скорость деструкции связана с концентрацией перекиси степенной зависимостью , а скорость структурирования прямо пропорциональна концентрации перекиси, поэтому при высоких концентрациях реакция структурирования начинает преобладать. Этот эффект используется для стереогибридизации смеси изотак-тического и атактического полипропилена, чем достигается существенное улучшение его морозостойкости. Гибридный стереоизомер представляет собой смесь привитых и блоксополимеров изотакти-ческого полипропилена с атактическим.
Метод вулканизации серой можно применить также и к смеси аморфного гюлиолефина с натуральным или синтетическим каучуком . В литературе описаны вулканизация полиолефинов под действием трихлорметансульфурилхлорида в присутствии катализаторов Фриделя—Крафтса , а также сшивание нолипро-пилена с помощью монохлористой серы и фтористого бора при повышенной температуре .
Старение и стабилизация полипропилена
Механизм реакции окисления
Согласно существующим представлениям о механизме термоокислительной деструкции полипропилена , процесс окисления, протекающий довольно быстро уже при температурах выше 100° С, проходит через стадии образования и разложения гидроперекисей, что обусловливает его автокаталитический характер. Зависимость скорости поглощения кислорода полимером от времени описывается уравнением Семенова для цепных реакций с вырожденными разветвлениями:
где А, j—постоянные;
DO2—количество вступившего в реакцию кислорода;
t—продолжительность процесса.
Исследованиями установлено, что первичным продуктом окисления полипропилена являются гидроперекиси и скорость окислительной деструкции пропорциональна их концентрации .
В настоящее время можно считать общепризнанным, что радикальноцепной процесс окисления полипропилена протекает по такому же механизму, как и других сложных углеводородов , и может быть описан следующей схемой реакций:
Реакция 1 представляет собой первичную инициирующую реакцию: образование радикала происходит либо за счет прямого взаимодействия углеводорода с кислородом
либо в результате разрыва связи С—С под действием коротковолнового излучения. На начальной стадии окисления преобладают непосредственные реакции углеводорода с кислородом, а позже превалирует инициирование за счет разложения гидроперекисей по реакциям 4—6.
Анализ возможных реакций распада гидроперекисей позволяет объяснить все химические изменения в полипропилене при термоокислительной деструкции, за исключением образования окислов углерода и кислот, которые появляются в конце процесса, по-видимому, в результате окисления продуктов, возникших на предшествующих стадиях реакции.
Схемы, образования различных продуктов окисления
I. Распад гидроперекисей
В цепи появляется одиночная группа
а) Взаимодействие гидроперекиси по связи С—Н соседней цепи. Появляется одиночная группа
б) Взаимодействие гидроперекиси по связи С—Н той же цепи. Возникает структура:
а) Взаимодействие гидроперекисей соседних цепей друг с другом. В макроцепях образуются группы
б) Взаимодействие гидроперекисей соседних третичных атомов углерода одной цепи. Возникает структура:
II. Реакции групп
1. Реакции одиночной группы
а) Вследствие отрыва водорода от своей или соседней цепи образуется гидроксильная группа.
б) Схема разрыва макромолекулы:
Таким образом, реакции окисления протекают в такой последовательности:
2. Реакции групп —С—О. в цепях со структурой I, 2б:
3. Группы —С—О. в структурах, возникших по реакциям I, За и I, 3б, действуют как одиночные группы —С—О. .Итак, гидроксильные группы появляются в цепи по реакциям II, 1а и II, 1б. Группы С=0 образуются по реакциям II, 1б и II, 2, двойные связи—по реакции II, 2, ацетальдегид и формальдегид—по реакциям II, 1б. Снижение молекулярного веса полипропилена вызывают реакции II, 1б и II, 2. Вода образуется при бимолекулярном распаде гидроперекисей.
Ингибиторы цепной реакции окисления
Ингибиторы разветвленной цепной реакции окисления углеводородов можно разделить на три класса:
1. Вещества, вступающие в реакцию с радикалами с образованием малоактивных продуктов.
2. Вещества, вступающие в реакцию с гидроперекисями с образованием неактивных продуктов.
3. Вещества, поглощающие ультрафиолетовые лучи и препятствующие тем самым разрыву связей в молекуле углеводорода .
Вещества , реагирующие с радикалами с образованием малоактивных продуктов
К наиболее распространенным ингибиторам этого класса относятся замещенные фенолы и ароматические амины. В результате исследования механизма ингибирования цепной реакции окисления различных углеводородов выделены два типа ингибиторов:
а) взаимодействующие с радикалом с отдачей водорода
причем образуются гидроперекись и малоактивный радикал;
б) ингибиторы, ароматические кольца которых образуют с радикалом комплекс и тем самым стабилизируют его . Этот механизм действия ингибиторов до сих пор еще не был достаточно хорошо, изучен.
Реакция по механизму а) предполагает легкий отрыв водорода от молекулы ингибитора. Исходя из этого можно сделать некоторые предположения о структуре веществ, которые могут использоваться в качестве ингибиторов.
1. Водород легко отрывается в том случае, если оставшийся неспаренный электрон имеет возможность сопряжения с более обширной п-электронной системой в молекуле. Чем больше энергия сопряжения, тем меньше прочность связи водорода в молекуле. Это наиболее характерно для ароматических соединений.