Смекни!
smekni.com

Печатные платы (стр. 5 из 6)

Рассмотренные элементы полупроводниковых ИМС обладают паразитными компонентами, ограниченным диапазоном номинальных значений и весьма малыми рассеиваемыми мощностями. При разработке топологии ИМС необходимо стремиться к исключению паразитных связей между ее элементами и к обеспечению требуемого теплоотвода.

6.2 Изготовление биполярных ИМС с изоляцией p-n переходами

На рис 15 показана структура интегрального n-р-n-транзистора изолированного p-n переходом. В этом транзисторе подложкой является кремний р-типа; на ней созданы эпитаксиальный n-слой и так на­зываемый скрытый n+-cлoй. Изолирующий р-n-переход создается путем диффузии ак­цепторной примеси на глубину, обеспечивающую соединение образу­ющихся при этой диффузии р-областей с р-подложкой. В этом случае эпитаксиальный n-слой разделяется на отдельные n-области (изоли­рующие «карманы»), в которых и создаются потом транзисторы. Эти области будут электрически изолированы только в том случае, если образовавшиеся р-n переходы имеют обратное включение. Это дости­гается, если потенциал под­ложки n-р-n транзистора бу­дет наименьшим из потенци­алов точек структуры. В этом случае обратный ток через р-n переход незначителен и практически исключается связь между n-областями (карманами) соседних тран­зисторов.

Теперь, зная принцип изоляции p-n переходом, и воспользовавшись материалом предыдущих пунктов, можно дать развернутое описание технологии.

а) Изготовление биполярных ИМС методом разделительной диффузии насквозь эпитаксиального слоя (рис 16) состоит из двух этапов: изготовления эпитаксиальной структуры со скрытыми n+-областями (а-в) и изготовления биполярной ИМС на этой структуре (г-з).

Эпитаксиальные структуры обычно изготавливают в отдельном процессе. Легирующая примесь для скрытых n+-областей должна иметь высокую растворимость в кремнии при малой глубине диффузии. Поверхностная концентрация скрытого слоя не должна быть слишком высокой, так как это увеличивает диффузию в растущий эпитаксиальный слой, а также механические напряжения и плотность дислокаций, вызванные несоответствием атомных радиусов кремния и примеси. В связи с этим для получения скрытого n+-слоя применяют сурьму и мышьяк, которые имеют меньшие, чем фосфор, коэффициенты диффузии. Однако при использовании мышьяка в скрытых слоях наблюдается большое количество дефектов. Поэтому для создания высоковольтных биполярных микросхем скрытые слои легируют преимущественно сурьмой.

Эпитаксиальный n-слой выращивают обычно хлоридным методом. Толщина слоя 3 ¸ 25 мкм в зависимости от назначения ИМС.

По рассмотренной технологии изготавливают ИМС первой и второй степени интеграции. Возможности процесса для получения более высоких степеней интеграции ограничены из-за ряда недостатков ИМС: наличия больших токов утечки, большой площади изолирующего р-n перехода, а значит и емкости паразитной связи, низкой радиационной стойкости.


б) Изготовление биполярных ИМС методом коллекторной изолирующей диффузии (КИД) – изолированные карманы и одновременно коллекторные n+n++-области формируются в процессе диффузии донорной примеси сквозь тонкий (1 ¸ 2 мкм) эпитаксиальный p-слой (рис 17). Для изолирующей диффузии необходимы окна в SiO2-маске (на рисунке не указаны), перекрывающие скрытые n+-области. После диффузии получаются изолированные n+p-карманы. Базовая p+-диффузия проводится без SiO2-маски, что исключает фотолитографию и упрощает технологический процесс.

В КИД-технологии число фотолитографий уменьшается по сравнению с предыдущим процессом. Область коллектора сильно легирована, поэтому нет необходимости для повышения быстродействия ИМС проводить дополнительную диффузию золота или другой понижающей время жизни неосновных носителей тока примеси. Однако в эпитаксиальной базе дрейф носителей от эмиттера к коллектору уменьшен, что понижает быстродействие ИМС. Кроме этого тонкий эпитаксиальный слой ограничивает пробивное напряжение коллектор-база из-за распространения объемного заряда в базовую область.



6.3 Изготовление биполярных ИМС с диэлектрической изоляцией

Диэлектрическая изоляция обеспечивает лучшие параметры ИМС.

а) Изоляция пленкой диэлектрика с использованием поликристаллического кремния реализуется в эпик-процессе. Исходной заготовкой является однослойная nn+-структура (рис 18). После локального травления на глубину около 15 мкм и удаления SiO2-маски термически выращивают или осаждают из паро-газовой фазы пленку диоксида кремния толщиной 1 ¸ 2 мкм. Поверх нее осаждают слой высокоомного поликремния толщиной 175 ¸ 200 мкм. Для получения изолированных n+n-карманов лишнюю часть кремния сошлифовывают. Полученная при этом подложка структуры ИМС, как и при изоляции p-n-переходом, проводящая, хотя и имеет более высокое удельное сопротивление. Для улучшения изоляции слой SiO2 иногда заменяют слоем Si3N4, двойными слоями SiO2–Si3N4 или SiO2–SiC.

Таким образом, получение кремниевых карманов в поликристаллическом кремнии выполняется по меза-эпитаксиальной технологии. Элементы ИМС в этих карманах далее формируются по планарной технологии. В целом процесс можно охарактеризовать как меза-эпитаксиально-планарный. Наряду с приведенным маршрутом имеются его модификации. Например получение комплементарных биполярных ИМС, в составе которых имеются p-n-p и n-p-n транзисторы (рис 19).

Эпик-процессы относительно сложны и трудоемки. Основная сложность заключается в необходимости прецизионной механической обработки. К недостатку метода также относится относительно небольшая степень интеграции. ИМС.

Эпик-процессы относительно сложны и трудоемки. Основная сложность заключается в необходимости прецизионной механической обработки. К недостатку метода также относится относительно небольшая степень интеграции. ИМС.

б) Необходимо отметить, что эпик-технология требует прецезионной механической обработки, которая затруднена из-за наличия прогиба подложки в результате различия коэффициентов температурного линейного расширения монокристаллического и поликристаллического кремния и оксида кремния. Различие микротвердости этих материалов приводит к наличию ступенек на поверхности, что затрудняет получение качественной металлизации. С целью устранения отмеченных недостатков разработаны технологические процессы, в которых вместо поликристаллического кремния для изолирующих областей и основания кристаллов используют стекло, ситалл или керамику, т.е. проводят изоляцию диэлектрическим материалом. Такие процессы имеют общее название «кремний в диэлектрике» (КВД). У них много общего с обычным эпик процессом. Отличие состоит в том, что сначала фор

мируют элементы ИМС (рис 20,а), а затем пластину с элементами со стороны выводов подвергают локальному травлению – создают мезаобласти (рис 20,б). После этого пластину со стороны мезаобластей прикрепляют к вспомогательной пластине (рис 20,в), а ее обратную сторону подвергают шлифованию (рис 20,г) с последующим нанесением изолирующего диэлектрика (рис 20,д). Завершают процесс удалением вспомогательной пластины (рис 20,е) и металлизацией.

Диэлектрическая изоляция по сравнению с p-n изоляцией технологически сложнее; площадь, занимаемая элементами, больше. Но, благодаря лучшим электрическим свойствам, она постоянно совершенствуется и широко применяется в производстве биполярных ИМС.

6.4 Изготовление биполярных ИМС с комбинированной изоляцией

В основу изготовления полупроводниковых биполярных ИМС с комбинированной изоляцией положены процессы, обеспечивающие формирование элементов с изоляцией p-n переходами их горизонтальных участков и диэлектриком – вертикальных боковых областей.


а) Изопланарные процессы основаны на использовании кремниевых пластин с тонким (2 ¸ 3 мкм) эпитаксиальным слоем, селективного термического окисления кремния на всю глубину эпитаксиального слоя вместо разделительной диффузии, проводимой в обычном планарно-эпитаксиальном процессе. Реализация такого процесса достигается использованием при маскировании на первых стадиях формирования структуры ИМС специфический свойств нитрида кремния Si3N4. Нитрид кремния препятствует превращению кремния в SiO2 в местах, где Si3N4 служит в качестве защитного слоя. Кроме того, нитрид кремния легко удаляется травителем на основе фосфорной кислоты, который не воздействует на оксид. Изопланарная технология позволяет создавать тонкие базовые области и небольшие коллекторные области с оксидными боковыми стенками и тем самым обеспечивает получение транзисторных структур малых размеров и высокого быстродействия. Имеются две разновидности изопланарной технологии: «Изопланар I» и «Изопланар II».

При изготовлении ИМС по процессу «Изопланар I» в качестве исходной используют кремниевую пластину p-типа с эпитаксиальным n-слоем и скрытым n+-слоем. Начинают процесс с наращивания на поверхности пластины слоя нитрида кремния., в котором с помощью фотолитографии формируют окна под изолирующие области. Затем производят травление кремния на глубину, превышающую половину толщины эпитаксиального слоя, после чего окислением вытравленные канавки заполняют оксидом кремния. После удаления слоя нитрида при маскировании оксидом кремния в локализованных островках кремния («карманах») формируют транзисторные структуры и осуществляют металлизацию.