Раньше в большинстве случаев шлифовка была односторонней, т.е. каждая из двух плоскостей пластины шлифовалась отдельно. Однако современная технология промышленного производства предусматривает двусторонню шлифовку пластин кремния свободным абразивом (рис 7). По сравнению с другими методами такое шлифование более производительно, обеспечивает высокую точность обработки поверхностей, не требует наклейки пластин. Остаточные механические напряжения распределены более равномерно, что позволяет получать пластины с меньшим изгибом.
Подаваемая через верхний шлифовальник суспензия равномерно окружает все пластины, образуя прослойку между шлифовальниками и обрабатываемыми поверхностями. При работе станка движение верхнего шлифовальника и кассет для пластин-сепараторов передается зернам абразива. Свободно перемещаясь и переворачиваясь они создают определенное давление на обрабатываемые поверхности. Это приводит к появлению микротрещин и микровыколок, которые отрываются от поверхности и уносятся в сборник с отработанной суспензией.
Движение шлифовальника через цевочные колеса передается сеператорам. Пластины, увлекаемые сепараторами, совершают сложные перемещения между шлифовальниками, чем достигается равномерность их обработки и износа шлифовальников. Шлифование проводят в несколько этапов, постепенно уменьшая зернистость абразива.
По окончании шлифовки на поверхности все же остается механически нарушенный слой толщиной до нескольких микрон и выше, под которым расположен еще более тонкий, так называемый "физически нарушенный" слой. Последний характерен наличием "незримых" искажений кристаллической решетки и механических напряжений, возникающих в процессе шлифовки.
Удаление обоих нарушенных слоев и снижение неровностей поверхности до уровня, свойственного оптическим системам и составляющего сотни, а иногда десятки ангстрем осуществляется обезжириванием и полировкой.
3.2 Обезжиривание поверхности
Как уже было сказано, поверхность отшлифованной пластины не удовлетворяет качеством. Для ее доводки необходимо удалить молекулярные органические и химически связанные с поверхностью загрязнения, а затем – остаточные ионные и атомарные. Для этого применяют обезжиривание поверхности.
Обезжиривание (отмывка) в органических растворителях (толуоле, дихлорэтане, спиртах: этиловом, метиловом и др) применяется для удаления с поверхности пластин жиров животного и растительного происхождения, минеральных масел, смазок, воска, парафина и других органических и механических загрязнений и наиболее часто выполняется погружением, в парах, с помощью ультразвука, струйной обработкой.
Обезжиривание погружением (рис 8) выполняют в специальных герметичных установках с двумя-четырьмя сваренными в единый блок ваннами с повышающимся уровнем жидкости. Полупроводниковые пластины в химически инертных кассетах, например из фторопласта, погружают в ванну с
наименьшим уровнем и по мере очистки последовательно переносят в ванны с большим уровнем растворителя. В ванну с наивысшим уровнем из перегонного куба поступает чистый растворитель, а из нее избыток растворителя стекает в ванну с меньшим уровнем и т.д. Из ванны с наименьшим уровнем загрязненный растворитель сливается в отстойник, из которого поступает для очистки дисцилляцией в перегонный куб. Процесс обезжиривания интенсифицируют подогревом и перемешиванием растворителя. Ультразвуковое обезжиривание выполняют в специальных ваннах, дно и стенки которых совершают механические колебания с УЗ-частотой (рис 9).
В жидкости возникают вихревые акустические потоки с высокими скоростями, которые интенсивно перемешивают жидкость, а также упругие волны (сгустки и разрежения за счет смещения частиц жидкости). В местах разрежения жидкости появляются кавитационные пузырьки. Под действием сил, которые стремятся вернуть смещенные частицы в исходное положение, эти пузырьки после кратковременного существования захлопываются. При интенсивных колебаниях и захлопывании кавитационных пузырьков возникают ударные волны, сообщающие большие ускорения молекулам жидкости, которые с силой ударяются о поверхность обрабатываемых пластин и сбивают с них частицы загрязнений. Благодаря кавитации жидкость способна проникать в глубокие поры, каналы, углубления, которые при обычных методах остаются неочищенными.
3.3 Полировка
Обезжиренные пластины подвергаются окончательной обработке – полировке. Чаще всего используется химическая полировка (травление), т.е. по существу растворение поверхностного слоя полупроводника в тех или иных реактивах. Обязательными компонентами таких реактивов являются окислитель (обычно азотная кислота) и растворитель образующегося окисла (обычно плавиковая кислота. Кроме этих компонентов в состав травителей входят ускорители и замедлители реакции. Выступы и трещины на поверхности стравливаются быстрее, чем основной материал, и в целом поверхность выравнивается. Чтобы раствор не застаивался у поверхности травления, применяется динамическое травление, т.е. вращение ванны во время процесса (рис 10)Иногда химическую полировку сочетают с предварительной механической. Для этого тканые или нетканые материалы (сатин, батист, сукно, замшу и др) натягивают на обычный шлифовальный круг и закрепляют хомутиком. Полирование выполняют в несколько этапов, постепенно уменьшая размер зерна и твердость абразива, а на последнем этапе полностью исключают абразивное воздействие на обрабатываемый материал (рис 7).
4 Фотолитография
Именно внедрение литографии в полупроводниковое производство в 1957 г. определило дальнейшее развитие элементной базы электроники и позволило перейти от дискретных элементов к интегральным.
В производстве современных микросхем литография – самый универсальный технологический процесс. Она позволяет воспроизводимо и с большой точностью выполнять сложные рисунки с размерами элементов до одного и менее микрометра в разнообразных материалах. Литография применяется при изготовлении полупроводниковых и пленочных структур, для получения всевозможных канавок и углублений в полупроводниковых и иных материалах. С ее помощью изготавливают шаблоны – инструменты для проведения самого процесса литографии, получают сквозные отверстия в фольге при изготовлении прецезионных свободных масок, выводных рамок или лент, применяемых для автоматизированной сборки и герметизации интегральных микросхем.
Основное назначение литографии при изготовлении структур микросхем – получение на поверхности пластин контактных масок с окнами, соответствующими топологии формируемых технологических слоев, и дальнейшая передача топологии (рисунка) с маски на материал данного слоя.
Сущность процесса литографии заключается в следующем. Литография представляет собой сложный технологический процесс, основанный на использовании явлений, происходящих в актинорезистах при актиничном облучении.
Актинорезисты, на практике называемые просто резистами, представляют собой материалы, чувствительные к излучению определенной длины волны (к актиничному излучению), и стойкие (резист – сопротивляться) к технологическим воздействиям, применяемым в процессе литографии. Под действием излучения происходящие в резистах процессы необратимо меняют их стойкость к специальным составам – проявителям.
Резисты, растворимость которых в проявителе увеличивается после облучения, называются позитивными. Негативные резисты после облучения становятся практически нерастворимыми в проявителе.
В зависимости от типа применяемого излучения различают оптическую, рентгеновскую, электронную и ионную литографии. Более подробно мы рассмотрим оптическую литографию или фотолитографию. Фоторезисты представляют собой сложные полимерные композиции, в составе которых имеются фоточувствительные и пленкообразующие компоненты, растворители и специальные добавки.
Фотошаблоны являются основными инструментами фотолитографии, с их помощью производится локальное облучение фотослоя в соответствии с топологией микросхемы. Фотошаблон для изготовления структур микросхем – плоскопараллельная пластина (или гибкая пленка) из прозрачного для УФ-излучения материала с нанесенным на ее рабочую поверхность непрозрачным пленочным рисунком, соответствующим топологии одного из слоев структуры микросхемы и многократно повторенным со строго определенным шагом в пределах рабочей области пластины (пленки).
Для основы фотошаблонов применяют оптическое боросиликатное стекло или полимерные пленки, которые хорошо обрабатываются и не изменяют свойств под действием излучения. Для выполнения рисунка применяют галоидно-серебряную фотографическую эмульсию (эмульсионные фотошаблоны), металлы (металлизированные фотошаблоны) и полупрозрачные для видимого света оксиды или другие материалы (транспарентные, цветные фотошаблоны).
Рис 11 наглядно демонстрирует процесс фотолитографии. На поверхность двуокиси кремния наносится равномерный слой фоторезиста. Сверху на него накладывается фотошаблон. Сквозь него фоторезист засвечивается ультрафиолетовым светом. После этого пластину с фоторезистом проявляют; в процессе проявления засвеченные участки фоторезиста стравливаются и в этих местах обнажается поверхность двуокиси кремния. Оставшийся (незасвеченный) слой фоторезиста подвергают термическому дублению – полимеризации, в результате чего этот слой становится нечувствительным к химическим травителям. Поэтому, когда на следующем этапе пластину подвергают травлению, растворяются лишь обнаженные участки двуокиси кремния, вплоть до поверхности самой пластины, вследствие чего в оксидной маске получается необходимая совокупность «окон», через которые в дальнейшем проводят локальную диффузию или напыление контактов. Далее удаляется задубленный слой фоторезиста и пластина с оксидной маской готова к дальнейшей обработке.