2.6. Расчет необходимой мощности электродвигателя и определение расхода электроэнергии.
Мощность двигателя вентиляторной установки N,кВт определяется по формуле:
N = Q*H / 100*n; (2.7)
Где: Q-подача турбомашины, м3/сек
Н-давление турбомашины, Па
n-к.п.д. турбомашины
На первой ступени регулирования требуемая мощность двигателя равна 830кВт
На первой ступени работы установки применяем двигатель:
СДН-17-41-16, с мощностью 1000кВт и скоростью 375 об/мин, к.п.д.=0,94, cos =0,9, U=6000В.
Запас мощности равен:
RД = Nдв / Nmin = 1000 / 830 = 1,20482 (2.8)
Где: Nдв- Мощность двигателя
Nmin- Минимальная требуемая мощность
На второй ступени регулирования требуемая мощность двигателя равна 1577кВт. Для второй ступени принимаем двигатель мощностью 2000 кВт.
Запас мощности равен:
RД=Nдв / Nmin=2000 / 1577=1,26823
Где: Nдв- Мощность двигателя
Nmin- Минимальная требуемая мощность
Запас мощности принятого двигателя к расчетной мощности должен быть не менее 10-12%.
Годовой расход электроэнергии Wг, кВт*час. определяется по формуле:
Wг=(Qср*Нср / Nд*nср*nн*nд*nс*nр)nчас*nдн, (2.9)
Где : Qср =Qшах+Qmin/2 –среднее значение производительности.
Hc=Hmax+Hmin/2 –среднее значение давления.
nср -средний к.п.д. вентиляторной установки.
nп –к.п.д. передачи от двигателя к вентилятору (0,9…0,95).
nд –к.п.д. двигателя (0,85…0,95).
nс - к.п.д. электрической сети (0,95).
nчас –число рабочих часов вентилятора в сутки (24).
nдн –числоо рабочих дней в году (365).
На первой ступени регулиования годовой расход электроэнергии равен:
WГ = 1079221,63 кВт*час
На второй ступени регулиования годовой расход электроэнергии равен:
WГ = 2558443,26 кВт*час
Дистанционное управление и контроль вентиляторной установки осуществляется с помощью аппаратуры УКАВ.
2.7. Расчет и выбор кабельной сети высокого напряжения.
Сечение кабеля высокого напряжения определяется исходя из тока нагрузки электродвигателя. Расчет производится по допустимому нагреву, экономической плотности тока, термической устойчивости к токам к.з. и допустимым потерям напряжения.
Для расчета сечения жилы кабеля по допустимому нагреву рабочим током необходимо определить ток в кабеле Jк, А:
Jк = Nдв / 1,732 * Uн ; (2.10)
Nдв -номинальная мощность двигателя, кВт
Uн -напряжение сети, В
Jк = 2000 / 1,732 * 6 = 192,45 А.
Минимальное сечение жилы кабеля по допустимому нагреву принимаемое к прокладке 50 мм2. Кабель прокладывается по воздуху.
Экономическое сечение жилы кабеля по допустимому нагреву рабочим током Sэк, мм2
Sэк=Jк / Jэк , (2.11)
Jк -номинальный ток.
Jэк –экономически выгодная плотность тока, (2,5 А).
Sэ к = 192 / 2,5 = 76,8мм2
Принимаем кабель сечением 95мм2.
Минимальное сечение жилы кабеля по термической устойчивости к току короткого замыкания: Smin, мм2
Smin=J*tф1/2/C, (2.12)
С –коэффициент, учитывающий конечную температуру нагрева жил и напряжения кабеля.
Для кабеля с медными жилами и бумажной пропитанной изоляцией напряжением 10 кв. С=145,
Для кабеля с резиновой или полихлорвиниловой изоляцией
С=122;
tф = tрм = tвм ; - фиктивное время тока короткого замыкания,
которое для шахтных кабельных сетей можно принимать равным реальному времени срабатывания максимального реле (tрм) и высоковольтного выключателя (tвм);
t = 0.05 + 0.1 = 0.15 с;
Jф – действующее значение установившегося тока короткого замыкания А определяется по фактической мощности тока короткого замыкания на жилах ЦПП;
Jф=Sкз* ЦПП / 31/2 U =100000/31/2*6=9622,5 (2.13)
Где: SкзЦПП = 100000 КВА.- мощность тока короткого замыкания на жилах ЦПП.
Sмин =9622.5*0.251/2/186 = 29.16 мм2.
Принимаем кабель сечением жилы 50 мм2,
Сечение жилы кабеля с учетом допустимых потерь напряжения;
Sдоп = 31/2 * Jк * L2 * соsV / Y * Uдоп; (2.14)
Где: L2 - длинна кабеля от ЦПП до двигателя вентилятора;
Y =50 м/ом мм – удельная проводимость жилы бронированного кабеля.
Uдоп – допустимая потеря напряжения в высоковольтном кабеле от ЦПП до двигателя;
Условно принимаем 2.5% от Uном;
Uдоп = Uном* 25 / 100 = 150 В. (2.15)
Отсюда:
Sдоп = 31/2*120*800*0.9 /50*150 = 20 мм2;
Из четырех значений сечений принимаем наибольшее –50 мм2.
Окончательно принимаем кабель СБН 3 * 95 .
2.8. Расчет и выбор КРУ.
Выбор высоковольтного КРУ производится по номинальному рабочему току и напряжению по отключающей способности;
По электродинамической и термической устойчивости к токам КЗ;
Кроме того расчитывается и проверяется уставка минимального реле.
Номинальное напряжение сети известно 6 кв;
Номинальный рабочий ток высоковольтного КРУ Iном, А
Iном=Рдв / 31/2*Uc = 192.45; (2.16)
Где: Рдв - Мощность двигателя, кВт
Uc - Напряжение сети, В
Принимаем высоковольтное КРУ типа КСО-285 на номинальные токи отключения 10 кА.
Расчетный ток отключения при коротком замыкании равен действующему значению установившегося тока КЗ JФ и определяется по мощности КЗ на жилах ЦПП J¥ = 9.62 кА.
Электродинамическая устойчивость высоковольтного КРУ
Электродинамическая устойчивость высоковольтного КРУ проверяется по iу- ударному и эффективному ( полному ) Jф току короткого замыкания, А
Iу =Ку * 21/2*J¥; (2.17)
Ку=1.3 – ударный коэффициент
Iу =1.3*21/2 *9.62 =17.69 кА.
Эффективное значение тока КЗ, кА
Jф =1.09 *9.62 =10.49 , (2.18)
Расчет термической устойчивости
Расчет термической устойчивости сводится к определению соответствующего тока термической устойчивости.
JT=JФ*(tф / t)1/2=9.62*(0.25*0.15)1/2=12.4 кА. (2.19)
tф= 0.15 с.
Параметры принятого аппарата должны быть не менее расчетных.
Сравнение расчетных величин с параметрами принятого аппарата.
Таблица 3 Сравнение расчетных величин
Расчетные величины | Параметры КСО-285 |
Uс= 6кВ | Uн= 6кВ |
Iнр=192.45 А | Iнр=400 А |
Iф=9.62кА | Iф=20кА |
Iу=17.69кА | Iмах=51кА |
Iэф=10.49кА | Iфмах=31кА |
It =12.4кА | It мах=20кА |
Ток уставки максимального реле высоковольтного комплексного распределительного устройства определяется:
Iу ³ (1.2 – 1.4) Iп / Кт , А (2.20)
Где 1.2 – 1.4 – коффициент, предотвращающий ложное срабатывание максимального реле.
Кт=80 коэффициэнт трансформации трансформаторов тока.
Iпн = 1152А – номинальный пусковой ток двигателя;
Iу=(1,2-1.4)*1152/80=(17,28 – 20,16)
Выбираем уставку 20 А (Уставка выбрана из таблиц паспорта ячейки КСО-285)
Iкз. На вводе в КРУ, кА
Iкз.=Sк/1,73* 6=9,622 (2.21)
Определяем сопротивление магистрали до шин ЦПП
rм=Uн/1,73*Iкз=6/1,73*9,622=0,36 Ом. (2,22)
Растояние от ячейки до двигателя вентилятора 350 м, пркладываем кабель СБН 3х95.
Определяем активное сопротивление кабеля:
rк=R0*L1=0.91*0.35=0.06685 Ом (2.23)
Оределяем индуктивное сопротивление:
Xk=X0*L1=0,078*0,35=0,0273 (2.24)
Определяем полное сопротивление:
Jk=(r2k+Xk)0.5=(0.066852+0.02732)0.5=0.07220 Ом (2.25)
Определяем установившейся ток КЗ на шинах ЦПП
I¥=6000/1,73*0,0766=45223,26 А (2.26)
Проверяем выбранную уставку
Iкз/Iу³1,5: (2.27)
9622/1600=6
Что удовлетворяет нашим условиям
2.9. Выбор разъединителя
Выбор разъединителя производится по номинальному току и напряжению. Исходя из выше указанных условий выбираем разъединитель типа: РВЗ-6/400 с внутренней вставкой
2.10. Выбор трансформатора для вспомогательного оборудования
Расчет ведется по коэффициенту спроса, для этого составляется таблица в которую вносятся данные вспомогательного оборудования.
Таблица№4 Вспомогательное оборудование
Наименование потребителей | Кол. | Тип двигателя | Р двиг. кВт. | åР двиг. кВт. | Jн, А | Uн, В | cosj |
1. Лебедка | 3 | ВАО 42-2 | 7,5 | 22,5 | 7 | 380 | 0,86 |
2.Нагреватель аппарат | 2 | ВАО 32-4 | 3,0 | 6,0 | 6 | 380 | 0,86 |
3.Спрямляющий аппарат | 2 | ВАО 32-4 | 3,0 | 6,0 | 6 | 380 | 0,86 |
4.Тормоз эл. Магнитный | 2 | ВАО 32-4 | 3,0 | 6,0 | 6 | 380 | 0,86 |
5. Вентилятор обдува | 10 | ВАО 12-2 | 1,0 | 10,0 | 6 | 380 | 0,86 |
Продолжение таблицы 4