Смекни!
smekni.com

Очистка газообразных выбросов от аэрозолей (стр. 8 из 12)

Отечественной промышленностью серийно выпускаются рукав­ные фильтры типа ФВ, МФУ, РФГ, ФВК, ФРМ, ФВВ, МФВ, МФС, ПФР, ФР.

Рукавные фильтры типа ФВ предназначены для средней и тонкой очистки газов от волокнистой пыли. Рукава выполняют из суровой бязи. Фильтры МФУ применяют для тонкой очистки газов и воздуха от сухой и слипающейся пыли с размером частиц до 1 мкм (цемент, мука, зола).

Таблица 13.

Техническая характеристика рукавных фильтров

Тип фильтра

Фильтрующая поверхность, м2

Число секций

Число рукавов в секции

Диаметр рукава, мм

Длина рукава, мм

Масса фильтра, кг

ФВК-30

15

2

18

135

2060

1053

ФВК-60

45

4

18

135

2060

1682

ФВК-90

75

6

18

135

2060

2300

ФРМ-1-6

105

6

10

-

-

5776

ФРМ1-8

147

8

10

-

-

7137

ФРМ1-10

189

10

10

-

-

8633

ФВВ-45

30

3

18

135

2090

1735

ФВВ-90

75

6

18

135

2090

2935

МФВ-204

350

12

17

220

3000

-

МФС-45

30

3

16

172

1850

4778

3.7.3. Зернистые фильтры

Фильтрующий слой в этих фильтрах образован зернами сферической или другой форме. Могут использоваться при высоких температурах – до 500 – 800°С, в условиях воздействия агрессивной среды. Зернистые фильтры распространены значительно меньше, чем тканевые фильтры. Различают насыпные зернистые фильтры, в которых элементы фильтрующего слоя не связаны жестко друг с другом, и жесткие зернистые фильтры, в которых эти элементы прочно связаны между собой путем спекания, прессования, склеивания и образуют прочную неподвижную систему.

Зернистые жесткие фильтры керамические, металлокерамические и др. обладают значительной устойчивостью к высокой температуре, коррозии, механическим нагрузкам. Их недостаток – высокая стоимость, большое гидравлическое сопротивление, трудность регенерации.

В насадке насыпных фильтров используют песок, гравий, шлак, дробленые горные породы, кокс, крошку резины, пластмасс, графита и др. материалы в зависимости от требуемой устойчивости и к воздействию температуры, химических веществ и др.

Зернистый фильтр может быть единственной ступенью в установке или первой ступенью перед более эффективным фильтром, например с материалами ФП.

Регенерация осуществляется путем рыхления слоя вручную или механически, промывки водой, замены слоя.

Пример такого фильтра – зернистый гравийный фильтр для улавливания пылей с наличием абразивных частиц и агрессивных газов от дробилок, грохотов, сушилок, мельниц, транспортирующих устройств предприятий по производству цемента, извести, гипса, фосфорных удобрений и др. Удельная нагрузка на фильтр – 17 – 50 м3/(м2×ч), сопротивление фильтра – в пределах 0,5 – 1,5 кПа. Эффективность очистки – до 99,8 %.

3.8. Аппараты мокрой очистки газов

Одним из простых и эффективных способов очистки промышленных газов от взвешенных частиц является мокрый способ, получивший в последние годы значительное распространение в отечественной промышленности и за рубежом.

Аппараты мокрой очистки газов отличаются высокой эффективностью улавливания взвешенных частиц и небольшой стоимостью по сравнению с аппаратами сухой очистки.

Некоторые типы аппаратов мокрой очистки (турбулентные газопромыватели) могут быть применены для очистки газов от частиц размером до 0,1 мкм.

Аппараты мокрой очистки газов по степени очистки могут не только успешно конкурировать с такими высокоэффективными пылеуловителями, как рукавные фильтры, но и использоваться в тех случаях, когда рукавные фильтры не могут быть применены вследствие высокой температуры, повышенной влажности или взрывоопасности очищаемых газов.

В аппаратах мокрой очистки газов одновременно со взвешенными частицами можно улавливать парообразные и газообразные компоненты. К недостаткам мокрой очистки следует отнести: необходимость обработки образующихся сточных вод, повышенный брызгоунос и необходимость защиты аппаратов от коррозии при обработке агрессивных сред. Несмотря на эти недостатки, мокрые газоочистные аппараты с успехом применяют в химической промышленности.

Аппараты мокрой очистки часто используют в газоочистных системах для одновременного охлаждения и увлажнения газов. В этом случае газоочистные аппараты служат еще и теплообменниками смешения, где охлажденный газовый поток непосредственно контактирует с охлаждающей жидкостью.

Среди аппаратов для очистки газов от пыли мокрые пылеуловители отличаются наибольшим многообразием, что обусловливается силами, воздействующими на газо-жидкостные потоки. При этом жидкая фаза находится в аппарате в виде пленки, струи, капель, пены или различных сочетаний.

По принципу работы аппараты мокрой очистки газов делятся на следующие группы: полые и насадочные, барботажные и пенные, аппараты ударно-инерционного типа, центробежного типа, динамические и турбулентные промьватели.

3.8.1. Полые и насадочные аппараты

В полых и насадочных аппаратах запыленные газы пропускают через поток распыляемой, разбрызгиваемой или стекающей по насадке жидкости. При этом частицы пыли захватываются потоками промывной жидкости и осаждаются в аппарате, а очищенные газы выбрасываются в атмосферу.

В полых скрубберах промывку газов осуществляют с помощью разбрызгивания жидкости навстречу движущемуся очищаемому потоку. Для орошения скрубберов применяют форсунки грубого распыления. Высокая эффективность очистки газов достигается в том случае, если промывная жидкость распыливается с образованием капель 0,5 — 1 мм. Обычно скруббер представляет собой вертикальный аппарат круглого или прямоугольного сечения. Форсунки устанавливают в одном или нескольких сечениях по высоте аппарата.

Для снижения брызгоуноса скорость газа в аппарате не должна превышать 1 - 1,2 м/с. Гидравлическое сопротивление полого скруббера невелико и обычно не превышает 250 Па. Расход воды составляет 5 - 10 м3/ч на 1 м2 площади поперечного сечения. Наиболее полно в этих аппаратах улавливаются частицы пыли более 10 мкм.

Характерной особенностью насадочных скрубберов является то, что процесс выделения пыли происходит на смоченной поверхности насадки в результате многочисленных изменений движения газового потока в аппарате. Насадочные скрубберы заполняют насадочными элементами различной конфигурации, которые удерживаются на опорных решетках. К беспорядочной насадке относятся кольцевая (при загрузке навалом), седлообразная, кусковая; в регулярной - хордовая, блочная, уголковая.

Недостатками насадочных скрубберов являются частые забивки насадки при обработке запыленных газов, что ограничивает область их применения в технике пылеулавливания. Насадочные колонны целесообразно применять только при улавливании хорошо смачиваемой пыли, особенно в тех случаях, когда процессы улавливания сопровождаются охлаждением или очисткой газов от других компонентов.

3.8.2. Барботажные и пенные аппараты

В барботажных аппаратах очищаемые газы в виде пузырьков проходят через слой жидкости; при этом вследствие большой поверхности соприкосновения газов с жидкостью протекает процесс очистки газов от взвешенных частиц. Очищаемые газы барботируют в жидкость через трубки, опущенные в слой жидкости. Для дробления газов на мелкие пузырьки край барботажной трубки часто делают зубчатым. Эффективность подобных аппаратов достаточно велика, однако из-за сложности изготовления они имеют ограниченное применение в промышленности.

В пенных аппаратах пылеулавливающий эффект достигается в результате движения очищаемого газа через слой пены. Пена в этих аппаратах может формироваться различными способами: на решетке, куда подается жидкость, продуваемая снизу воздушным потоком или при ударе воздушного потока о зеркало жидкости.

Пенные пылеуловители широко распространены в химической промышленности. Они просты по конструкции и достаточно эффективны. В отличие от барботеров в пенных пылеуловителях газы проходят через жидкость со скоростью, превышающей скорость свободного всплывания пузырьков, что создает условия для образования высокотурбулизованной пены.