Смекни!
smekni.com

Оптические и магнитооптические системы (стр. 2 из 3)

Связующий слой

Пластмассовая

оболочка

МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера. В отличие от традиционных магнитных устройств в данном случае головка чтения/записи содержит магнит и лазер.

В процессе записи, магнитный материал МО диска не способен изменить свою полярность, пока не будет нагрет до температуры около 145`С. В результате образуется крошечная область в большем магнитном поле, и только на эту область влияет поле. После окончания нагрева сопротивляемость снова увеличивается но полярность нагретой точки остается. В цикле записи, полярность магнитного поля меняется на противоположную, что соответсвует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, и оставляет участки с двоичными нулями без изменений.

В процессе чтения с МО диска используется эффект Керра. Лазерный луч, который движется над диском и считывает данные, поляризован. Таким образом, фотоны в лазерном луче ориентированы в одном направлении. Когда поляризованный луч бьет магнитно-упорядоченные частицы диска, магнитное поле частиц слегка поворачивает вектор поляризации светового луча. Этот поворот ощущается магнитной головкой.

Схема считывания информации

с магнитооптического диска



1 0 1 0 0

При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается. Такой способ, не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничиваниие участков диска возможно только под действием высокой температуры, вероятность случайного перемагничивания очень низка, в отличии от магнитной записи, к потери которой могут привести случайные магнитные поля.

Недостатки магнитооптических носителей

В конструкции современных МО-дисководов есть один существенный недостаток. В процессе записи продольное магнитное поле должно оставаться ориентированным в одном направлении. Оно не может менять направление потому, что высокая индуктивность электромагнита препятствует быстрому переключению полярности магнита. Следовательно, магнит в современных МО-дисководах может построить магнитное поле в данной область дорожки диска только в одном направлении, при каждом прохождении области дорожки под головкой чтения/записи. Например, если поляризация продольного поля направлена вверх, можно поменять поляризацию направленных вниз полей на противоположную, но ориентацию вверх не поменяешь.

Чтобы работать надежно, МО процессу записи требуется одинаковая ориентация всех полей на записываемой области. Другими словами, данную область сначала надо стереть, а потом на нее записывать. В МО-дисководах процесс стирания требует отдельной фазы. Во время первого шага стирается ранее записанный материал, а во второй шаг записывается новый.

В результате этого двухшагового процесса мы имеем очевидное возрастание среднего времени доступа к диску во время записи, которое и так великовато. Несмотря на отличия в скорости, многие МО-дисководы крутят диски не спеша - 2400 оборотов в минуту, ровно на треть медленнее винчестерских дисков. Каждый оборот МО-диска, следовательно, происходит за 25 миллисекунд. Даже если не брать в расчет время на перемещение головки, среднее время доступа при записи никак не будет быстрее 37.5 миллисекунд. Понятно, что большинство производителей работают над “одношаговыми” МО-дисководами и увеличивают скорость вращения диска.

МО-диски также страдают и другими недостатками. В то время, как головки плавающего механизма винчестера весят доли грамма, головки МО-диска массивны и вмонтированы в магнитную и оптическую части. Обычно они смонтированы на полозьях, которые скользят по стальным трубкам. Перемещение этих массивных головок требует мощных механизмов и, благодаря инерции, существенно большего времени, чем головки винчестера. Фактически, если говорить о среднем времени доступа, оно намного отличается от винчестеров. Кроме того, последние могут записывать данные с интервалом 15 миллисекунд между наугад выбранными байтами, а МО-диски делают это не быстрее, чем за 60, не считая двухступенчатого цикла записи.

Оптическая часть, используемая МО-системами, немного спасает положение. В отличие от головок винчестера, которые должны “парить” в микродюймах над поверхностью диска, оптические головки могут работать на расстоянии. Направляющие стержни точно фиксируют расстояние между головкой и диском, и с этого расстояния она работает надежно и безопасно. Повреждение головки невозможно в МО-системах, так как головка отделена от поверхности. Фактически, только луч лазера “касается” поверхности диска. Как и в CD, оптически активная поверхность МО-диска запечатана в прочный слой пластика, предохраняющего от малейших повреждений, Лазерный луч фокусируется, проходя через оболочку и не сфокусирован на поверхности диска, а только сходится в точку под прозрачным поверхностным слоем. Повреждения, такие как царапины или пыль на поверхности диска, не оказывают существенного влияния на точность чтения или записи. Конечно, МО-диски также снабжены корректором сбоев для минимизации появления ошибок в потоке обрабатываемых данных.

Основные области применения дисков

многоразовой записи

Спиральные дорожки магнито-оптических дисков свидетельствуют о том, что и по мнению самих разработчиков эта технология не является самой лучшей при произвольном доступе к данным, но хороша при передаче больших объемов последовательных данных. Поэтому современные магнито-оптические диски не предназначены для повсеместной замены ими жестких дисков в качестве первичного массового носителя данных. Им отводится роль вторичной массовой памяти - незанятое пространство между жесткими дисками и ленточными стриммерами.

Другими словами, МО-диски не рассчитаны на универсальное использование, но они обладают сильными возможностями и представляют собой прекрасный выбор, когда требуется безопасное и надежное средство для хранения сотен мегабайт данных.

Области применения МО-дисков определяется их высокими характеристиками по надежности, объему и сменяемости. МО-диски необходимы для задач, требующих большого дискового объема. Это такие области, как :

- компьютерная графика : хранение, анализ и редактирование цветных изображений, цветоотделение, верстка газетных полос и создание библиотек графических изображений;

- медицина : ведение записей, диагностирование рентгеновских снимков, реляционный анализ, хранение историй болезни, биомедецинские исследования;

- технические системы : хранение чертежей САПР/АСУ, анализ информации технической службы, обучение, ведение каталогов комплектующих деталей, работа с документами, научные исследования и космические наблюдения;

- Автоматизация офиса : файловый сервер, ведение документации, библиотека;

- Центры обработки данных.

Однако небольшая скорость доступа к данным, не дает возможности применять МО-диски для задач с критичной реактивностью систем. Поэтому применение МО-дисков в таких задачах сводится к хранению на них временной или резервной информации.

Для МО-дисков очень выгодным использованием является резервное копирование жестких дисков или баз данных. В отличии от традиционно применяемых для этих целей стриммеров, при хранении резервной информации на МО-дисках, существенно увеличивается скорость восстановления данных после сбоя, так как МО-диски являются устройствами с произвольным доступом, и это позволяет восстанавливать только те данные в которых произошел сбой. Кроме того, при таком способе восстановления нет необходимости полностью останавливать систему до полного восстановления данных. Эти достоинства, делают применение МО-дисков для резервного копировании достаточно выгодным, хотя и более дорогим по сравнению со стриммерами.