2) Используются средние значения температур по сечению трубопровода и рассматривается изменение температуры только по направлению потока.
3) Такие параметры как теплоемкость, плотность и коеффициенты теплоотдачи считаются постоянными.
4) Механической энергией по сравнению с тепловой и потерями тепла в окружающую среду пренебрегаем.
Рассмотрим теплообменник типа «труба в трубе».
В данном случае рассматривается процесс теплообмена между двумя жидкостями, протекающие в концентрически расположенных трубках, когда нагреваемой является жидкость во внешней трубке.
Для данного теплообменника можно записать следующие уравнения, которые характеризуют процесс теплообмена. В этих уравнениях индекс ‘1’ относится к внутреннему потоку, а индекс ‘2’ ко внешнему потоку.
Уравнение для потока в трубке:
Введем обозначения
Уравнение для стенки трубки:
Уравнение для потока в межтрубном пространстве:
Уравнение динамики: зависимость выходной температуры нагреваемой нефти Θ2 от температуры греющей нефти Θ1и температуры стенок трубки Θст.
Оптимизация технологического процесса.
Для данного технологического процесса (теплообмен между жидкостями) применим метод оптимизации – метод сканирования.
Запишем статическую функцию объекта:
T(G,t) = 26,664 – 0,0036·G + 0,274·t
Составим программу оптимизации:
Вывод: программа определила максимальную температуру нагреваемой нефти на выходе из теплообменника
оптимальный расход нагреваемой нефти
оптимальная температура нагреваемой нефти на выходе
Выводы по проделанной работе.
1. Корреляционный и регрессионный анализ работы объекта показал, что
зависимость выходной температуры нагреваемой нефти от расхода не наблюдается, так как,
во-первых, коэффициент корреляции меньше нуля
во-вторых, это наглядно показывает уравнение регрессии
T(G) = 30,545 – 5,193·10-3·G
(при изменении расхода G, температура Т практически не изменяется)
2. В ходе теплового расчета теплообменника выяснились следующие тепловые показатели аппарата:
· коэффициент теплоотдачи от нагревающей жидкости к стенке трубки
· коэффициент теплоотдачи от стенки трубки к нагреваемой нефти
· коэффициент теплопередачи
Тепловой баланс процесса:
разница между количеством переданной теплоты и принятой теплоты не очень велика.
3. Было получено следующее уравнение динамики процесса теплообмена
4. Оптимизация процесса теплообмена было проведено по статической функции объекта T(G,t) = 26,664 – 0,0036·G + 0,274·t. Выяснилось, что
· максимальная выходная температура нагреваемой нефти равна
· оптимальная входная температура нагреваемой нефти равна
· оптимальный расход нагреваемой нефти равен
Список литературы:
1. Кафаров “Методы кибернетики в нефтехимической промышленности”.
2. Бояринов, Кафаров “Методы оптимизации”.
3. Лутошкин Г.С. “Сбор и подготовка нефти, газа и воды к транспорту”
4. Юренев В.Н., Лебедев П.Д. Теплотехнический справочник. Том №2.
Содержание:
1. Описание технологического процесса КУПВСН стр. 1
2. Краткая теория по теплообменник стр.3
4.1. Регрессионный и корреляционный анализ стр. 9
4.2. Тепловой расчет теплообменника «труба в трубе» стр.13
4.3. Уравнение динамики процесса теплопередачи стр. 16
4.4. Оптимизация технологического процесса стр. 19
5. Выводы по проделанной работе стр. 20
6. Список литературыстр. 22