Смекни!
smekni.com

Методика моделирования тепловизионных изображений (стр. 2 из 5)

1+ [ 1 - (n*rн)] × a

------------------------ [(n*j)2 - (n*k)2] +[(eûë*j)2 - (eûë*k)2]

1- [ 1 - (n*rн)] × a

P’(N, L) = ---------------------------------------------------------------------- . ( 15 )

1+ [ 1 - (n*rн)] × a

------------------------- [(n*j)2 - (n*k)2] +[(eûë*j)2 + (eûë*k)2]

1- [1 - (n*rн)] × a

С помощью этой формулы можно определить степень поляризации всех элементов наблюдаемой тепловизором части поверхности объекта любой формы. Для этого нужно знать направление нормали n для каждого элемента поверхности в зависимости от его положения в декартовой системе координат. Оно определяется как оператор Гамильтона ( набла-оператор ) от функции f(x,y,z) = 0, описывающий форму объекта:

[( df/dx ) × i + ( df/dy ) × j + ( df/dz ) ×k ]

n = ---------------------------------------------------- . ( 16 )

[( df/dx )2+ ( df/dy )2 + ( df/dz )2] 1/2

Единичный вектор наблюдения rн определяется как разница векторов l и R по формуле:

rн = ( l - R ) / | ( l - R )|,( 17 )

где l - вектор, определяющий положение декартовой системы координат по отношению к точке наблюдения H;

R - радиус-вектор элемента dS поверхности объекта, определяющий его положение в декартовой системе координат x, y, z с единичными ортами i, j, k.

Радиус-вектор задаётся R формулой :

R = x × i + y × j + z × k . ( 18 )

Если направление наблюдения центра декартовой системы координат выбрано вдоль оси х, то есть направление вектора l и оси х совпадают, то вектор l выразится в виде:

l = l × i , ( 19 )

где l - расстояние от центра декартовой системы координат О до точки наблюдения Н;

i - единичный орт оси ОХ .

В этом случае выражение (17) примет вид:

rн = [( l-x)i + y × j +z × k ] / [( l-x)2+ y2+ z2]1/2 . ( 20 )

Вектор перпендикулярной составляющей коэффициента излучения eûë перпендикулярен плоскости, определяемой векторами n и rн ( плоскости наблюдения ), и находится как векторное произведение этих векторов по формуле:

eûë = [ n* rн ] / | [ n* rн ] |. ( 21 )

Таким образом, определив степень поляризации P’ от всех элементов видимой части объекта, можно построить оптико-математическую модель поляризационных тепловизионных изображений объектов любой формы.

2.1. Теория моделирования поляризационных тепловизионных

изображений на основе степени и азимута поляризации

теплового изображения.

Для описания этого метода воспользуемся рис. 3.

Допустим, что азимут поляризации излучения элемента dS поверхности объекта составляет угол t с поверхностью референции.

Для определения степени поляризации P’ необходимо найти величины видеосигналов U0 и U90 поляризационных тепловизионных изображений элементов dS поверхности объекта при азимутах поляризатора t=00 и t=900. Выразим U0 и U90 через параллельную и перпендикулярную составляющие коэффициента излучения элемента dS и азимут t поляризации этого элемента, который представляет собой угол между плоскостью поляризации ( ось ОА ) и плоскостью референции ( ось OY ). В общем случае, когда азимут t поляризации излучения элемента dS не совпадает с азимутом поляризатора, обе компоненты коэффициента излучения дают вклады в величины видеосигналов U0 и U90 следующим образом:

U0(N, L) = Umax× cos2 t + Umin× sin2 t = A(N, L) × ( e÷÷ × cos2 t + eûë ×sin2 t) ; ( 22 )

U90(N, L) = Umax× sin2 t + Umin× cos2 t = A(N, L) × ( e÷÷ × sin2 t + eûë ×cos2t) ; ( 23 )

где Umax= A(N, L) × e÷÷ , Umin= A(N, L) × eûë.

Согласно формуле (6) найдем степень поляризации P’(N, L) излучения элемента dS объекта в виде:

P’(N, L) = [ e÷÷ - eûë ] / [ e÷÷ + eûë] × cos(2 × t) = P × cos(2 × t) , ( 24 )

где P = [ e÷÷ - eûë ] / [ e÷÷ + eûë ] - распределение степени поляризации излучения элементов dS объекта.

Так как cosy = ( n* rн ), то с учётом формулы (12) имеем:

P’(N, L) = [ 1- ( n* rн ) ] × а × cos(2 × t); ( 25 )

В связи с тем, что вдоль оси ОА расположен вектор nyz , являющийся проекцией вектора n на плоскость xyz, то справедливо выражение:

cos t = ( nyz*j ) , ( 26 )

тогда, приняв во внимание тождество

cos(2 × t) = 2 × cos2t - 1,

выражение (25) для расчёта степени поляризации всех элементов поверхности объекта примет вид:

P’(N, L) = а ×[ 1- ( n* rн ) ] × [ 2 × ( nyz*j )2 -1 ]. ( 27 )

Таким образом, формулы (15) и (27) с учётом формул (16) - (21) являются оптико-математической моделью поляризационных тепловизионных изображений излучающих объектов [5,6]. В тех случаях, когда необходимо моделировать поляризационные тепловизионные изображения по распределению степени поляризации, можно воспользоваться выражением:

P(N, L) = а ×[ 1- ( n* rн ) ]. ( 28 )

2.3. Формулы для моделирования изображения

диска, сферы и эллипсоида.

Для подтверждения теории моделирования поляризационных тепловизионных изображений рассмотрим объекты в виде сферы, эллипсоида и диска. Как уже отмечалось раньше, традиционный тепловизионный метод при наблюдении этих объектов сверху даёт одинаковое изображение как по контуру, так и внутри контура, несмотря на явное различие формы этих объектов внутри контура изображения видимой части их поверхности. Для подробного вывода остановимся на сфере, как наиболее наглядном и симметричном объекта ( рис. 4).

Уравнение сферы в декартовых координатах имеет вид:

f(x,y,z) =x2+ y2+ z2- R2= 0. ( 29 )

Тогда n = (x × i + y ×j + z × k ) /R - вектор нормали сферы,

где R = (x2+ y2+ z2)1/2 - радиус сферы.

Вектор наблюдения rн можно определить из формулы (17):

rн = [( l-x) × i - y × j - z × k ] / [R2+ l2+ 2 × l × x]1/2 . ( 30 )

Тогда по правилам векторного умножения:

e = [ n* rн] = ( ny × rнz - nz × rнy) × i +( nz × rнx - nx × rнz) × j +( nx × rнy - ny × rнx) × k ;

в нормированном виде:

_____________

eûë = ( lz×i - ly× j ) / (R × Ö R2+ l2 - 2 × l × x ), ( 32 )

Теперь определим все остальные недостающие выражения для формулы (15):

_____________

( n* rн ) = (x × l -R2)/ (R × Ö R2+ l2 - 2 × l × x ), ( 33 )

( n* j)2 = y2 / R2 ; ( 34 )

( n* k)2 = z2 / R2 ; ( 35 )

( eûë * j)2 = l2× z2/ (R2× ( R2+ l2 - 2 × l × x ); ( 36 )

( e÷÷* k)2 = l2× z2/ (R2× ( R2+ l2 - 2 × l × x ); ( 37 )

После подстановки формул (30) - (37) в выражение (15), получим:

l × x - R2

2 - ---------------------------------

R2× ( R2+ l2 - 2 × l × x )1/2æ y2- z2öé l2 × z2 - l2 × y2 ù

----------------------------------------- × ï --------- ê + ï --------------------------- ç

l × x - R2 èR2 øëR2×( R2+ l2 - 2 × l × x )û

---------------------------------

R2× ( R2+ l2 - 2 × l × x )1/2

P’ (N, L) = ---------------------------------------------------------------------------------------------- .

l × x - R2

2 - ---------------------------------

R2× ( R2+ l2 - 2 × l × x )1/2 æ y2+ z2 ö é l2 × z2 + l2 × y2 ù

----------------------------------------- × ï --------- ê - ï ---------------------------ç

l × x - R2 èR2 øëR2×( R2+ l2 - 2 × l × x)û

---------------------------------

R2× ( R2+ l2 - 2 × l × x )1/2

После упрощения это выражение принимает вид:

P’(N, L) = [( y2 - z2 ) / ( y2 + z2 )] ×( 1 - x/R ). ( 38 )

Это есть степень поляризации теплового изображения сферы в декартовых координатах.

Перейдем к сферическим координатам:

X = R × sinq × cosj ;

Y = R × sinq × cosj ;

Z = R × cosq .

Тогда выражение (38) принимает вид:

sin2q × sin2j - cos2q

P’(N, L) = --------------------------- ( 1 - sinq× cosj) . ( 39 )

sin2q× sin2j + cos2q

Это и есть степень поляризации теплового изображения сферы в сферических координатах.

Аналогично можно получить формулы для эллипсоида. Для этого необходимо начать вывод с функции:

f(x,y,z) =x2 / b2+ y2 / a2+ z2 / c2- 1= 0. ( 40 )

С учётом обозначения K = b/a - коэффициента сжатия эллипсоида ( b - большая полуось эллипсоида, a - малая ), получим формулу для степени поляризации в декартовых координатах:

________________

P’(N, L) = [( y2 - z2) / ( y2 + z2)] ×[ 1 - ( x / Ö x2 + k2 × y2 + k2 × z2)] . ( 41 )

C учётом сферических координат для эллипсоида:

X = b × sinq × cosj ;

Y = a × sinq × cosj ;

Z = a × cosq .

степень поляризации принимает вид:

sin2q × sin2j - cos2qé sinq× cosj ù

P’(N, L) = -------------------------- × ê 1- ------------------------------------------------------ç(42)

sin2q× sin2j + cos2q ë Ö sin2q× cos 2j + k2 ×( sin2q× sin2j + cos 2q) û

Что касается диска, то для него используется формула ( 42 ), с учётом, что коэффициент сжатия k := 0.1, т.е. эллипсоид сжатый до состояния диска, когда большая полуось составляет всего лишь 10-ю часть от малой полуоси; для сферы формула ( 42 ) справедлива при k = 1. Таким образом, для получения модели поляризационного тепловизионного изображения диска, сферы и эллипсоида можно пользоваться формулой ( 42 ) с использованием различных значений k. При этом необходима связь углов q и j с номерами строк L и номерами элементов в строках N тепловизионного кадра. На основе геометрии наблюдения и логических рассуждений были получены следующие связи: