Смекни!
smekni.com

Лазеры на гетеропереходах полупроводниковые лазеры (стр. 2 из 2)

Значение порогового тока в зависимости от природы материала и геометрических параметров можно получить из следующих рассуждений. Пусть в области p—n-перехода существует светоизлучающий слой толщины D , который больше толщины d слоя с инверсной населенностью. Тогда можно предположить, что из всех существующих электронно-дырочных пар только часть d/D остается в активной области и может участвовать в индуцированном излучении.

Положим, что световая волна распространяется в кристалле и на каждую торцевую поверхность падает световой поток мощностью Ps , а коэффициент отражении от торца p. При наличии лазерного излучения произведение pPs экспоненциально увеличивается в зависимости от длины активной зоны L. Существующие потери световой волны значительно перекрываются лазерным усилением за счет индуцированного излучения. Каждый торец диода излучает свет мощностью Pвых/2=(1-p)Ps.. Если µ [см-1[см-1] — коэффициент потерь для волны при ее распространении в кристалле, а H [см-1] — коэффициент усиления, то мощность в зависимости от пройденного волной расстояния вдоль активной области будет

P=pPsexp[H(d/D)-µ]z.

Усиление волны происходит только в области с инверсной населенностью, поэтому величину Н необходимо умножить на d/D, в то время как потери имеют место по всему объему и поэтому коэффициент µ не имеет такого множителя. Тогда при прохождении кристалла длинной L будем иметь:

P=pPsexp[H(d/D)-µ]L;

ln(1/p)=[H(d/d)-µ]L.

Таким образом, условие лазерного излучения имеет вид

H(d/D)=µ+(1/L) ln(1/p). (1)

Коэффициент усиления H связан с плотностью инжектированного тока. Выражение для величины Н будет

H=gLw2I/(8¶en2dV), (2)

где для GaAs при комнатной температуре квантовая эффективность g=0.7 , длина волны излучения в вкууме Lw=9.0­­­·10­­­­­­­­­­-6см, показатель преломления n=3.34 при Lw ; V — ширина полосы спонтанного излучения, V=1.5·1013 c-1; e — заряд электрона; d —толщина активной области, d=10-4 см; I — плотность инжектируемого тока.

Выражение (2) справедливо для допорогового тока. Подставляя (2) в (1), поучим

(gLw2I)/(8¶en2VD)=µ+(1/L) ln(1/p). (3)

Левая часть в выражении (3) описывает усиление волны за один проход, а правая часть — потери . Из (3) нейдем значение порогового тока, достаточное для покрытия потерь:

I=(8¶en2VD)/(gLw2I)(µ+(1/L) ln(1/p)). (4)

Cлагаемое (1/L) ln(1/p) определяет потери на излучение. Коэффициент отражения может быть выражен через коэффициент пропускания T=1-p, и тогда разложение

ln[1/(1-T)] в ряд имеет вид

(1/L) ln(1/p)=(1/L) ln[1/(1-T)]=(1/L) [T-(T2/2)+ (T3/3)- (T4/4)+...].

Принебрегая членами высокого порядка поТ , найдем

(1/L) ln(1/p)=T/L.

Тогда выражение (4) представим в виде

I=(8¶en2VD)/(gLw2I)(µ+T/L). (5)

Формула (5) справедлива для приближенных расчетов. Из формулы (5) также следует, что для уменьшения I необходимо уменьшать D и наиболее оптимальным условием будет D=d . Но практически это условие трудно осуществить на обычном лазерном диоде, так как генерируемая в окрестности p—n-перехода световая волна распространяется не только в активной области, но и за ее пределами, где не выполняются условия инверсности населенности. Еще одной причиной является то, что часть инжектируемых электронов, обладая большой длиной свободного пробега, протаскивает активную часть p—n-перехода и не участвует в образовании электронно-дырочных пар. По этим причинам необходимо ограничить зону распространения генерируемого света и инжектируемых электронов и обеспечить условия, чтобы эти процессы протекали только в активной области. Желаемые свойства оптического ограничения могут быть получены на гетеропереходных структурах. Самым простым из них является лазер с одинарным гетеропереходом (ОГ), представленный на рис. 6, а. Излучающий p—n-переход образуется между GaAS и Ga(1-x)AlxAs посредством специальной технологической обработки. Если концентрации примесей примерно одинаковы на обеих сторонах p—n-перехода, то инжекционный ток будет существовать за счет электронов, инжектируемых в слой p-типа, поскольку эффективная масса электронов почти на порядок меньше эффективной массы дырок. Поэтому слой с инверсной населенностью будет находится в p-GaAs, толщина которого соизмерима с длинной диффузии инжектирумых электронов. Таким образом, область инверсии населенности ограниченна толщиной, где в основном и происходит рекомбинация электронов с последующим излучением.

В ОГ-лезере оптическое ограничение происходит с одной стороны, отсюда желаемый результат т. е. повышение эффективности работы гетеролазера, реализуется частично, а поэтому у ОГ-лазера значение порогового тока выше, чем у лазера с двойной гетероструктурой (рис. 6, б). Поскольку удалось уменьшить значение порогового тока у ОГ-лазера, это дало возможность использовать его работу пи комнатной температуре, но только в импульсном режиме накачки. В непрерывном режиме накачки при комнатной температуре работают лазеры с двойной гетероструктурой (ДГ).

Толщина активного слоя ДГ-лазера составляет не менее 1 мкм. При этом по всему слою создается инверсная населенность. Если в ОГ-лазерах толщина активного слоя соизмерима с длинной диффузии инжектируемого электрона, то в ДГ-лазерах толщина меньше этой длины. Кроме того, вДГ-лазерах обеспечивается оптическое ограничение с двух сторон активной зоны. Эти обстоятельства приводят к тому, что ДГ-лазеры являются высокоэффективными приборами и характеризуются минимальным пороговым током, что позволяет осуществлять непрерывную накачку электрическим током при комнатной температуре.

Для улучшения выходных характеристик гетероструктурного лазера в процессе получения гетероструктуры создают условия, обеспечивающие ограничение носителей заряда в активной области. Для структуры, изображенной на рис. 6, б, диаграмма энергитических зон приведена на рис. 7. Из-за того, что ширина запрещенной зоны у полупроводника больше в области с увеличением концентрацией атомов Al, возникают смешения в зоне проводимости на p—p+-переходе (dEc) и в валентной зоне на n—p- и

n+—p-переходах (dEv).

Когда к такой структуре прикладывается прямое напряжение смещения, электроны инжектируются из n- в p-область. Скачок зоны проводимости на p—p+-границе раздела на dEc обеспечивает энергетический барьер для инжектируемых электронов, производя тем самым ограничение их в p-области и увеличивая вероятность их рекомбинации с дырками. Скачок валентной зоны на n—p-переходе dEc повышает уже существующий потенциальный барьер, препятствующий инжекции дырок в n-область, улучшая тем самым инжекционную эффективность. Таким образом, у двойной гетероструктуры имеет место тенденция ограничения как основных, так и инжектируемых неосновных носителей в активной зоне. Это обеспечивает хорошие условия для получения более эффективной инверсной населенности. Значит ДГ-лазеры обеспечивают более высокие выходные характеристики по сравнению с ОГ-лазерами, и тем более по сравнению с гомопереходными лазерами. Сравнение технических характеристик показывает, что если у гомостктурного лазера пороговая плотность тока равна 104 А/см2 при квантовой эффективности 10%, то у ОГ-лазеров пороговая плотность тока равна 103 А/см2 при квантовой эффективности 40%. Эти лазеры работают только в импульсном режиме. У ДГ-лазеров пороговая плотность тока равна 700— 800 А/см2 , а квантовой эффективность составляет 55%. Эти лазеры работают в непрерывном режиме.

Однако у ДГ-лазеров большая угловая расходимость луча (20— 40°) в плоскости, перпендикулярной к плоскости перехода, из-за дифракции света в тонком активном слое, в то время как у гомоструктурных и ОГ-лазеров угловая расходимость составляет 15— 20°. У всех рассмотренных типов лазеров угловая расходимость луча в плоскости перехода составляет не более 10°.

4. Литература.

1). К. И. Крылов, В. Т. Прокопенко, В. А. Тарлыков “Основы лазерной техники “. Машиностроение 1990 год.

2).П. Г. Елисеев “Введение в физику инжекционных лазеров”.