Смекни!
smekni.com

Кинематический анализ механизма транспортирования ткани (стр. 9 из 17)

Z=300 ...699 (301 — изготовление отделочных складок на мужских сорочках, 302 — обработка пояса женского плаща, 303—притачивание манжет к рукавам мужской сорочки).

Для продвижения труднотранспортируемых материалов, в первую очередь с малым коэффициентом трения, требуется бо­лее четкая фиксация их слоев в процессе продвижения. Для по­шива таких материалов используются машины (классы 31-41+3, 31-42+3, 31-43+3), в которых материал в процессе продвижения зажимается между нижней и верхней рейками (вертикальный дифференциал).

Нижняя рейка Q2 (рис.2.1) получает движение по эллипсообразной траектории от механизма традиционной структуры, используемого в базовой машине. На распределительном валу О2, получающего вращение от главного вала О7 с помощью зуб­чато-ременной передачи, установлены два эксцентрика — 27 и 28. От эксцентрика 27 с помощью звеньев 23, 24, 25 и 26 сообщаются колебательные движения коромыслу 21, а следовательно, и валу О5 продвижения.Коромысло 22 передает эти движения державке 33, обеспечивая горизонтальные перемещения рейке Q2 на длину стежка, которая зависит от положения подвижной опоры O6. Эксцентрик 28 с помощью звеньев 29,30,31,32 и вала O8 обеспечивает перемещение рейки Q2 по вертикали.

Верхняя рейка Q1 также движется по эллипсообразной тра­ектории. Движения по горизонтали нижней Q2 и верхней Q1 реек должны быть синхронными. Это обеспечивается тем, что кине­матическая цепь горизонтального перемещения верхней рейки Q1получает движение от вала О5 продвижения нижней рейки Q2. На валу О5 установлено коромысло 21, которое с помощью звеньев 20, 19, 18, 17, 11и валов O4 и О3 обеспечивает гори­зонтальные перемещения державке 9 с закрепленной на ней рейкой Q1.

Державка 9 с одной стороны шарнирно связана с подвеской 6, а с другой имеет кронштейн 4, передающий движение с помощью ползуна 7 и кулисы 8на горизонтальное плечо рычага 5. Подвеска 6 шарнирно сое­динена с кронштейном 3 штанги 2, несущей на себе лапку 38.

Вертикальное плечо рычага 5 через кулисное звено 13, а также через звенья 12, 14, 15 и ось O1 связано с установленным на главном валу О2 экс­центриком 16. Таким образом, за один оборот главного вала О7 рычаг 5 совершает возвратное движение по вер­тикали. Пружина 35 обеспечивает прижатие к материалу соответственно верхней рейки Q1 или лапки 38.

При работе такого механизма могут иметь место два режима продвижения материала. При пошиве тонких материалов лапка 38 постоянно прижимает материал к игольной пластине P (см. рис. 2.2), арейки Q1 и Q2 при их сближении имеют между собой зазор, ве­личина которого достаточна для надежного захвата материала М и перемещения его относительно лапки.

При пошиве толстых, а особенно рыхлых материалов, необходима более четкая фиксация материала. Для этого траекторию верхней рейки Q1 (см. штрихпунктирные ли­нии) опускают ниже игольной пластины P. Тогда после со­прикосновения рейки Q1 с материалом рычаг 5 (см. рис 2.1), продолжая по­ворот по часовой стрелке, поднимает через кронштейн 3 штан­гу 1 и закрепленную на ней лапку 38. Продвижение материала М (см. рис. 2.2) производится рейками Q1 и Q2 при поднятой лапке Л. При подъеме рейки Q1 лапка Л опускается на материал и фиксирует его на игольной пластине. Такой режим в производственном обиходе называется «переплясом».

Конструктивно механизм верхней рейки выполнен путем ус­тановки дополнительных звеньев как внутри рукава машины, так и на его тыльной стороне. В рукаве машины дополнительно установлены валы 14 (рис. 2.3) и 23, а на приливах тыльной стороны рукава машины — оси 7 и 8. На штанге 50 винтом 49 закреплена лапка 46. Сквозь штангу пропущен шток 11, через палец 2 опирающийся на державку 51. На державке закрепле­на верхняя рейка 47, взаимодействующая при продвижении ма­териала с нижней рейкой 48. Державка 51 подвеской 52 шарнирно соединена с кронштейном штанги 50. На штангу 50 свер­ху действует пластинчатая пружина 20, а на шток 11 — анало­гичная пружина 15.

Для перемещения державки 51 с верхней рейкой 47 по го­ризонтали предусмотрен специальный механизм, аналогичный

механизму горизонтального перемещения нижней рейки 48. На распределительном валу 41 установлен эксцентрик 39, от кото­рого с помощью шатуна 40 и звена 42 регулятора сообщаются колебательные движения коромыслу 43 и валу 54, расположен­ному внутри вала продвижения 53. Коромысло 43 шатуном 38 связано с коромыслом 24, закрепленным с помощью клеммы на валу 14. На передней части вала также клеммой закреплено ко­ромысло 13 через тягу 12, сообщающее колебательные движе­ния оси 8 коромыслу 4. От коромысла 4 через звено 1 получа­ет движение по горизонтали державка 51 с верхней рейкой 47.

На главном валу 21 установлен эксцентрик 17, который с помощью шатуна 19, коромысла 22, вала 23, коромысла 10, шатуна 9, оси 7, коромысла 6 и шатуна 5 сообщает колебатель­ные движения угловому рычагу 3, горизонтальное плечо кото­рого поднимает и опускает державку 51 с верхней рейкой 47. Таким образом, верхняя рейка 47 совершает движение по эллипсообразной траектории.

Стойки 45 и 44 механизмов регулировки горизонтального пе­ремещения нижней 48 и верхней 47 реек установлены на теле­скопических (друг в друге) валах. На правых концах валов установлены коромысла 36 и 34, связанные через тяги 33 и 32 с рычагами регулятора длины стежка. Установленные на коро­мыслах ролики 35 и 37 опираются на толкатели, установленные под крышкой стола машины.

Величины перемещения нижней и верхней реек могут регу­лироваться независимо с помощью гаек 30, 29 и шкалы 28. На­жимом на рукоятку 27 обеспечивается реверс. Нижнее крайнее положение рукоятки 27 обеспечивается упором 31, устанавли­ваемым рамкой 25 с помощью гайки 26.

Регулировка усилия зажатия материала между рейками в процессе продвижения обеспечивается винтом 16, а усилие при­жатия материала к игольной пластине винтом 18.

2.2. Алгоритм кинематического анализа движения нижней рейки механизма транспортирования ткани швейной машины 131-42+3 класса.

Рассмотрим задачу кинематического анализа механизма привода нижней рейки швейной машины 131-42+3 класса. На рис. 2.4 представлена структурная схема механизма привода нижней рейки швейной машины.

Разобьём механизм на кинематические цепи подачи, подъёма и узел рейки. На рисунке 2.4 приведены кинематические схемы указаных узлов.

Введём неподвижную систему координат O1 XY, центр которой связан с осью вращения O1.

Обозначим

как обобщённая координата механизма.

(

= * t; = const).

С каждым звеном механизма свяжем подвижную систему координат.

Для узла подачи обозначим

,
,
,
,
- как угловые координаты поворота звеньев 2, 3, 4, 5, 6 соответственно, а
угловая координата поворота звена 5.

Для узла подъёма обозначим

,
- как угловые координаты поворота звеньев 7, 8 соответственно Для узла рейки обозначим
,
- как угловые координаты поворота звеньев 9, 10 соответственно.

В ходе кинематического анализа указанных кинематических цепей необходимо определить угол координаты

, i= 1…2
, определить координаты x , y , x ,y , x , y точек E, M и Q соответственно в системе координат O1XY. Обобщённая координата
изменяется в пределах от 0 до 2 … , поэтому
, i= 1…2
, x , y , x , y , x , y . являются функциями угла
. Также необходимо определить скорости и ускорения (первую и вторую передаточные функции указанных координат).

Для определения указанных величин разобьём кинематические цепи подачи, подъёма и рейки на структурные группы Ассура.

Кинематический центр подачи представляет собой кривошип O1A, к которому присоединена структурная группа ABD (см. рисунок 2.5). К структурной группе ABD присоединена группа BCO3. Угол

задан (параметр регулирования шага транспортирования), поэтому координаты точки B известны.

Узел подъёма рейки также разобьём на структурные группы. Он состоит из кривошипа O1F и структурной группы FKO4 (см. рис. 2.6). Узел рейки представляет собой структурную группу ENM (см. рис. 2.7).

Как следует из проведённого анализа структуры механизма, механизм имеет кривошипы O1A и O1F., 4 структурных группы первой модификации:ABD, BCO3, FKO4, ENM.

Блок-схемы алгоритмов кинематического анализа указанных структурных групп приведены в п.п. 1.3.1, 1.3.2 и 1.3.3. Математические модели для определения этих параметров приведены в [88]. Воспользовавшись результатами указанной работы приведём алгоритм кинематического анализа механизма привода нижней рейки. Блок- схема указанного алгоритма приведена на рисунке 2.8.