8)
9) М1 – коэффициент, характеризующий способ сборки структурной группы определяемый следующим образом (рис. 1.3.9,а): если проекция вектора
Требуется определить:
1) j1 – функцию положения угловой координаты звена AB группы по углу a;
2)
3) XB, YB – функции положения координаты точки В ползуна 2 группы в системе координат OXY по углу a;
4)
Блок-схема алгоритма кинематического анализа структурной группы второй модификации представлена на рис. 1.3.10. В блоке 6 происходит проверка условия существования группы. Если это условие не выполняется (т.е. при заданных значениях исходных параметров происходит разрыв кинематической цепи или угол давления принимает критическое значение) происходит переход на блок 18 и прекращение вычислительного процесса с выдачей предупреждающего сообщения о причине остановки вычислений. В блок-схеме используются подпрограммы: определения углов в промежутке от 0 до 2p с учетом знака sin и cos (см. блоки 4, 11); решения системы двух линейных уравнений методом Крамера (см. блоки 13, 16).
Структурная группа Ассура третей модификации применяется в механизмах перемещения материала 131-42+3 класса и др. На рис. 1.3.11 структурная группа этой модификации представлена в наиболее общем виде. Задачу кинематического анализа структурной группы третей модификации сформулируем следующим образом.
Известны величины (см. рис. 1.3.11):
1) L1 – длина плеча AC звена 1;
2) XQ1, YQ1 – функции положения координат точки Q1, принадлежащей направляющей ползуна В, по углу a в системе координат OXY;
3)
4) XA, YA – функции положения по углу a координат шарнира А (в заданной неподвижной системе координат OXY), присоединяющего структурную группу к другим структурным элементам кинематической схемы механизма одноподвижной вращательной кинематической парой;
5)
6) XB, YB – функции положения по углу a координат шарнира B (в заданной неподвижной системе координат OXY), присоединяющего структурную группу к другим структурным элементам кинематической схемы механизма одноподвижной вращательной кинематической парой;
7)
8) j2 – функция положения угловой координаты направляющей ползуна В, отсчитываемая относительно оси параллельной оси OX в положительном направлении (против часовой стрелке) по углу a;
9)
Требуется определить:
1) j1 – функцию положения угловой координаты шарнира А звена AС группы по углу a;
2)
3) L2 – расстояние от шарнира B ползуна 3 группы до точки С.
4)
5) XQ, YQ – функции положения координат точки Q, по углу a в системе координат OXY;
6)
Блок-схема алгоритма кинематического анализа структурной группы второй модификации представлена на рис. 1.3.12.. В блок-схеме используются подпрограммы: определения углов в промежутке от 0 до 2p с учетом знака sin и cos (см. блок 7); решения системы двух линейных уравнений методом Крамера (см. блок 4).
В результате кинематического анализа механизма транспортирования ткани швейной машины на ЭВМ определяется ряд дискретных значений координат XQi и YQi,
Известны величины:
1) Таблица значений координат XQi и YQi,
2) Высота H (см. рис. 1.3.11) уровня игольной пластины (задана конструктором).
Требуется определить величину шага транспортирования Т.
Под шагом транспортирования будем понимать величину Т (см. рис. 1.3.11) — расстояние между точками А и В, образованными пересечением линии игольной пластины Н—Н с траекторией движения среднего зуба рейки, т.е.:
При движении рейки по траектории против часовой стрелки (см. рис. 1.3.11,а) сшиваемые материалы будут перемещаться в сторону от работающего (противоположную направлению оси OX), что соответствует прямой подаче. Вычисленное по формуле (1.12) значение шага транспортирования в этом случае будет положительно. В противном случае, при движении рейки по часовой стрелке (см. рис. 2.13,б) сшиваемые материалы будут перемещаться по направлению оси OX (в сторону на работающего), что соответствует обратной подаче. Вычисленное по формуле (1.12) значение шага транспортирования в этом случае будет отрицательно.
Для определения координаты XA точки А последовательно перебирая номера положения входного звена механизма i от 1 до N, найдем такое значение i=k0, при котором выполнялись бы следующие условия:
В том случае если
Аналогичным образом определяем координату XB точки B. Последовательно перебирая номера положения входного звена механизма i от 1 до N, найдем такое значение i=k1, при котором выполняются следующие условия:
В том случае если
Блок-схема алгоритма определения шага транспортирования рейки представлена на рис. 1.3.12,а. Поиск точек А и В (см. рис. 1.3.12) пересечения траектории движения рейки с игольной пластиной происходит по одинаковой схеме. Различны только условия поиска: для момента выхода рейки над игольной пластиной это условие (1.13) - поиск точки А; для момента ухода рейки под игольную пластину это условие (1.15) - поиск точки В. Поэтому, алгоритм поиска координаты X точки пересечения целесообразно выделить в отдельную подпрограмму (см. блоки 2 и 3, рис. 1.3.12,а). Блок‑схема подпрограммы поиска точки пересечения траектории движения рейки с игольной пластиной представлена на рис. 1.3.12,б. В этой подпрограмме организован цикл по параметру i (номеру положения входного звена механизма) от 1 до N. В зависимости от того поиск какой точки задан в блоке 3 проверяется условие (1.13) — для точки А, или (1.15) — для точки B. Если найден номер i удовлетворяющий условию блока 3, то этот номер запоминается (блок 4) в переменной k. Далее в блоке 6 определяется лежит ли точка с координатами XQk, YQk на игольной пластине, если условие блока 6 выполняется то подпрограмма возвращает координату X найденной точки, в противном случае координата X точки пересечения траектории среднего зуба рейки с игольной пластиной определяется интерполированием по формулам (1.14) или (1.16) в зависимости от условий поиска поставленных в блоке 3. Заметим, что формулы (1.14) и (1.16) отличаются только номером найденного положения входного звена механизма k0 либо k1. Если в цикле (блоки 2—3) не найден номер i, удовлетворяющий условию поиска блока 3, то в блоке 5 фиксируется отсутствие пересечения траектории движения среднего зуба рейки с игольной пластиной.