Смекни!
smekni.com

Кинематический анализ механизма транспортирования ткани (стр. 4 из 17)

Проектирование механизмов транспортирования основано, как правило, на оптимизационных методах синтеза. В статье В.Ф.Ермолаева, В.А.Лишанкова и др. [76] предложена методика определения оптимальных параметров реечного механизма подачи материала, исходя из условий минимизации горизонтальной составляющей скорости зубьев рейки в начале и конце перемещений. В работе Б.С.Сункуева [77] рассмотрен синтез регулируемого шестизвенного механизма, входящего в состав кинематической цепи продвижения транспортирующего механизма. Синтез механизма произведен графоаналитическим методом по заданным функциям регулирования и дополнительным условиям.

Постановка и особенности решения задач оптимизации параметров регулируемых двенадцатизвенных механизмов подачи материала швейных машин рассмотрены в работе В.Ф.Ермолаева и В.А.Новгородцева [78]. Приводятся результаты оптимизации и отмечается, что требования, предъявляемые к механизмам подачи различны в зависимости от скоростных характеристик машины.

Оптимизация механизма транспортирования по функциональным зависимостям углов передачи приведена в статье В.Ф.Смирновой, В.П.Шерстнева и Б.С.Сункуева [79]. Дано аналитическое решение задачи с учетом конструктивных ограничений. В статье Ю.Ю.Щербаня и В.А.Горобца [81] рассмотрена оптимизация параметров механизма транспортирования по критерию минимума рассогласования движения рабочих органов (на фазе транспортирования). Разработан пакет прикладных программ.

Оптимизационный синтез механизма транспортирования рассмотрен и в работе Peisun Ma [81]. Оптимизация проводится с учетом минимизации отклонений траектории рейки механизма от требуемой и учетом условий процесса стежкообразования. Оптимизация была реализована на ЭВМ методом последовательных приближений.

Значительное количество работ посвящено экспериментальным исследованиям транспортирующих механизмов швейных машин. В статье O.Masanori и S.Hiroshi [82] приведены результаты исследования траектории движения рейки. Для регистрации траектории движения рейки авторы использовали лазерный датчик, для чего была разработана специальная экспериментальная установка. В результате произведенных исследований определено влияние на траекторию движения рейки скорости шитья.

Исследованию процесса продвижения материала на высокоскоростных швейных машинах посвящена работа Л.Б.Рейбарха и В.П.Полухина [83]. В ней приведены результаты экспериментального исследования влияния на длину стежка частоты вращения главного вала, силы давления прижимной лапки на материал и массы материала. В качестве объекта исследования выбрана двухигольная плоскошовная швейная машина 1876 кл. Эксперимент проводился на сложенной вдвое ленте из бязи шириной 50 мм (ГОСТ 11680-76, арт. 201). Частоту вращения главного вала машины варьировали в пределах (2000¸6000) мин-1. Массу материала имитировали последовательным нагружением горизонтально расположенной ленты гирями массой 0.5 и 1.0 кг. Давление прижимной лапки в ходе эксперимента изменяли в пределах (20¸60) Н. Номинальная длина стежка устанавливалась равной 3 мм.

Результаты исследования показали, что зависимость длины стежка от частоты вращения главного вала машины в диапазоне (2000¸6000) мин-1, как правило, имеет максимум. Уменьшение давления лапки с 60 Н до 20 Н смещает максимум к началу координат и приводит к резкому уменьшению длины стежка при больших скоростях. Увеличение массы материала до 1.0 кг еще более усугубляет тенденцию уменьшения длины стежка на больших скоростях, особенно при малых давлениях лапки. Сделан вывод, что для обеспечения наилучших условий продвижения материала в машине 1876 кл. необходимо устанавливать давление лапки »60 Н. Для обеспечения более строгого соблюдения диапазона изменения длины стежка при частоте вращения главного вала машины ³ 5000 мин-1 необходимо дальнейшее совершенствование конструкции механизма транспортирования.

В статье Ю.Ю.Щербаня и В.А.Горобца [84] выполнено экспериментальное определение зависимости величины посадки материала с различными физико-механическими свойствами при их стачивании от скорости главного вала швейной машины и усилия прижима прижимной лапки. Указывается, что необходимо учитывать возможность превышения допустимой величины посадки слоев материала при стабилизации длины стежка путем увеличения усилия прижима материала. Методика и методы оценки посадки, стягивания материала, прямолинейности строчки приведены в работе В.П.Полухина и Л.К.Милосердного [53].

В статьях Ю.Ю.Щербаня, В.А.Горобца, И.С.Силивончика [85],[86] исследуется возможность замены в механизме транспортирования рейки на рабочий орган с микрошероховатой поверхностью, получаемой напылением. Указано, что применение подобного рабочего органа позволяет увеличить в 1.5-2.0 раза коэффициент сцепления с материалами, уменьшить посадку, стягивание шва, стабилизировать длину стежка, а также снизить виброактивность машины.

В статье S.Mende [87] приведены результаты исследования взаимодействия системы “рейка - транспортируемый материал - прижимная лапка”. Отмечается, что на высоких скоростях (до 8000 мин-1) качество строчки во многом зависит от точности взаимодействия транспортирующих органов. Получены теоретические и экспериментальные зависимости влияния на прижимную лапку скорости шитья, траектории движения рейки, массы материала, жесткости пружины лапки.

1.3 Обзор алгоритмов подпрограмм кинематического анализа структурных групп Ассура, входящих в кинематические схемы транспортирующих механизмов.

Механизмы транспортирования ткани швейных машин представляют собой рычажные механизмы достаточно сложной структуры. Для решения задач кинематического анализа подобных механизмов чаще всего используется ЭВМ, разрабатываются пакеты прикладных программ. Общих программ анализа кинематики рычажных механизмов произвольного вида не существует. Разработка таких программ является весьма сложной задачей, требующей от исследователя соответствующих математических моделей и алгоритмического обеспечения.

Настоящая глава посвящена обзору алгоритмического обеспечения решения задач кинематического анализа рычажных механизмов, применяемых для транспортирования ткани в швейных машинах. Для реечного транспортирующего механизма швейных машин на стадии кинематического анализа характерно решение следующих задач:

1) определение функций положения, первых и вторых передаточных функций обобщенных координат звеньев механизма от обобщенной координаты входного звена;

2) определение траектории движения заданных конструктором точек рабочего органа механизма – рейки;

3) определение величины шага транспортирования Т;

4) определение зависимости шага транспортирования Т от параметров регулирования длины стежка, предусмотренных кинематической схемой механизма;

5) нахождение предельных значений параметров регулирования соответствующих верхней и нижней границе изменения шага транспортирования.

Для дифференциальных транспортирующих механизмов, перемещение материала в которых происходит двумя зубчатыми рейками — основной и дополнительной, перечисленные задачи решаются для каждой рейки в отдельности и, кроме того, определяются: степень дифференцирования подачи m (отношение шага транспортирования дополнительной рейки к шагу транспортирования основной рейки); зависимость m от параметров регулирования, предусмотренных кинематической схемой механизма; граничные значения параметров регулирования.

В качестве аналитического метода описания математической модели для кинематического анализа таких сложных многозвенных рычажных механизмов, как реечные механизмы транспортирования ткани швейных машин, на наш взгляд наиболее применим метод погруппного анализа [4]. Суть его состоит в последовательном математическом описании структурных групп Ассура, входящих в состав механизма, в порядке их присоединения при образовании структурной схемы. Исходя из анализа структурных схем транспортирующих механизмов швейных машин, можно заключить, что в них, как правило, применяются двухповодковые структурные группы Ассура первой, второй и третьей модификаций, а также, различные модификации трехповодковых структурных групп. Алгоритм кинематического анализа реечного механизма транспортирования ткани, согласно методу погруппного анализа, представляет собой некоторый головной модуль, объединяющий отдельные модули, каждый из которых содержит алгоритм анализа соответствующей структурной группы Ассура, в порядке их присоединения друг к другу, начиная с входного звена.

Рассмотрим ниже математические модели и алгоритмы кинематического анализа структурных групп Ассура, наиболее часто встречающихся в схемах реечных механизмов транспортирования ткани швейных машин. При этом решение задачи кинематического анализа осуществляется на ЭВМ численно для ряда дискретных значений угла поворота a (обобщенной координаты) входного звена транспортирующего механизма. Дискретное значение угла a для i-го положения входного звена может быть, например, определено из выражения:

, (1.1)

где a0 – начальное значение угла a; Da - выбранный исследователем шаг изменения угла a; Nвр – коэффициент, характеризующий направление вращения: Nвр=+1 или –1 при вращении соответственно против или по часовой стрелке; N – количество рассчитываемых положений механизма (начальное положение механизма совпадает с нулевым), N=2p/Da. Величина a0 представляет собой исходное значение угла a, выбираемое конструктором произвольно.