Отходы уранового производства, содержащие ванадий, – ценное сырье. Перспективен метод их переработки хлорированием в присутствии восстановителя. Продукт хлорирования VOCl3 – легколетучая жидкость, которую подвергают дистилляционной очистке, гидролизу в присутствии аммиака, последующей сушке и прокалке до V2O5.
В практике работы промышленных предприятий для выделения ванадия из растворов, получаемых после переработки карнотитовых руд, применяются ионитные и экстракционные процессы. В современной металлургической промышленности сорбционные методы получают все большее распространение [30].
Существует способ переработки патронитовых ванадийсодержащих концентратов, полученных из зол асфальтитов, заключающийся в многократной обработке руд крепкой щелочью и переводом ванадия в раствор. Для нейтрализации растворов используют азотную кислоту. Ванадий после выпаривания и разбавления растворов осаждают хлористым алюминием.
В ряде патентов предлагается обработка ванадийсодержащих материалов растворами сульфида натрия или проведение плавки с применением в качестве шихтовых материалов смеси сульфата натрия с углеродом. При этом образуются сульфованадаты натрия, которые легко растворяются в воде. Осторожным подкислением выделяется ванадий в форме сульфидов (V2S5 или V2S3). В данных процессах достигается очень хорошее отделение ванадия от железа [31, 32].
Разработан процесс извлечения некоторых металлов (Li, B, V и Ga) из летучей угольной золы [33]. Процесс включает 3 операции: двухстадийное выщелачивание серной кислотой при двух различных концентрациях, концентрирование редких металлов из раствора с применением хелатных смол и очистка каждого металла экстракцией. Галлий и ванадий выщелачивают 3-н. раствором H2SO4, затем концентрируют их совместно на хелатной смоле иминодиацетатного типа и очищают экстракцией с применением триоктиламмонийхлорида и ди(2-этилгексил)фосфорной кислоты соответственно.
Другой кислотный метод обработки золы был запатентован в США [34]. Он заключается в выщелачивании золы, содержащей V и Ni, соляной кислотой с промотором растворения (V2O5, гипохлориты натрия, калия, кальция, пероксиды, ClO2). Затем щелока отделяют от остатка и обрабатывают гидроксидом натрия, калия или кальция, повышая pH раствора до уровня 5,5-6,5(6,2). Выпадающий при этом осадок, содержащий соединения V(3+) и V(4+), отделяют от раствора, который затем дополнительно подщелачивают (до pH 8,5-9,5), выделяя в осадок гидроксид никеля. Ванадийсодержащий осадок высушивают, после чего смешивают с гидроксидом натрия, калия или кальция, смесь прокаливают на воздухе при 500-1000°C (950°C), в результате чего ванадий окисляется до пятивалентного состояния. V(5+) выщелачивают водой, полученные щелока подкисляют соляной кислотой, выделяя в осадок V2O5.
Предложены также щелочные способы обработки золы с целью извлечения ванадия. В одном из способов [35] ванадийсодержащую золу подвергают гравитационному разделению. Обогащенную ванадием фракцию выщелачивают щелочным раствором, продувая одновременно газ-окислитель (например, сжатый воздух). Щелочной раствор концентрируют, затем пропускают через него CO2-содержащий газ до pH 8-9. Осадок отделяют. К раствору добавляют соль аммония (NH4Cl) для извлечения ванадия в виде аммонийной соли.
В другом способе [36] смоченную золу-уноса подвергают разделению для образования тонкодисперсного углеродного продукта и не содержащей углерода водной суспензии. Полученную суспензию выщелачивают при повышенном давлении в растворе гидроксида щелочного металла с концентрацией менее 5 моль/л при 110-300°C. Суспензию разделяют на жидкую и твердую фазы для получения щелока от выщелачивания, обогащенного ванадием, и обедненного ванадием остатка. Щелок от выщелачивания приводят в контакт с экстрагентом, содержащим четвертичный амин и производное оксима. Затем насыщенный экстрагент приводят в контакт с водным раствором для получения ванадийсодержащего водного щелока и регенерированного экстрагента. Из ванадийсодержащего щелока извлекают ванадийсодержащие соединения.
Предложены способы извлечения ванадия из ванадийсодержащего сырья путем электрохимического выщелачивания [37, 38]. В этих исследованиях в качестве электролита предлагают использовать растворы, содержащие хлориды и карбонаты щелочных металлов. Электролиты, содержащие хлор-ионы, вызывают коррозию аппаратуры, использование карбонатов сопряжено с трудностями регенерации отработанного электролита. Объектом служил ванадийсодержащий конвертерный шлак Нижне-Тагильского металлургического комбината с содержанием пятиокиси ванадия 18,38%. Задача поисковых исследований заключалась в нахождении оптимальных параметров процесса, подборе конструкции и вида материалов электролизёров и электродов, состава электролитов. Факторы: температура и время выдерживания, плотность тока, концентрация электролита, высота и навеска шлакового слоя, перемешивание, введение активирующих веществ, отношение Т:Ж, а также температура и продолжительность предварительной термической обработки шлака. Были опробованы различные конструкции электролизёров и электродов из графита, никеля, свинца и нержавеющей стали. Наиболее подходящими оказались электроды из нержавеющей стали. Электролизёр имел форму стакана из оргстекла, катод представлял собой полый цилиндр, через который проходило перемешивающее устройство. Вокруг катода располагались аноды, сделанные в виде лопастей. Нижняя часть катода отделялась от среды фильтровальным материалом.
При использовании в качестве электролита серной кислоты (5-13%) степень перехода ванадия в раствор составила в пределах 60-80%. При этом раствор в значительном количестве загрязнялся железом, алюминием, фосфором и другими примесями. Так же не дали желаемого результата электрохимическое выщелачивание шлака в растворе едкого натра, хлорида натрия и их смеси. Извлечение ванадия в растворе не превышало 30-40%. Поэтому дальнейшие исследования проводили с предварительно обожженным шлаком. В качестве электролита использовали раствор едкого натра различной концентрации. Видимо, предварительная термическая обработка шлака (780-800°C, 15-20 мин) способствует разрушению его силикатной составляющей вследствие окисления шпинелида, что интенсифицирует процесс электрохимического выщелачивания.
Можно предположить, что увеличение скорости окисления ванадия низких валентностей происходит и за счет выделения атомарного кислорода при электрохимическом процессе.
Зола и шлак ТЭЦ представляет собой остаток от сжигания твердого топлива. Они являются продуктами высокотемпературной (до 1200-1700°C) обработки минеральной, несгорающей части углей. При этом в камерных топках получают отходы двух видов: зола-уноса и шлак.
Шлак образуется в результате сжигания размягченных частиц золы в объеме топки или на ее стенках и накапливается в шлаковом бункере под топкой. Размер зерен шлака 1¸50 мм. Зола-уноса уносится из топки с дымовыми газами и улавливается при их очистке в циклонах и электрофильтрах. Размер частиц золы менее 1 мм. Свыше 80% минеральной части углей переходит в золу, до 20% – в шлак.
Химический состав золы ТЭЦ-4
(экибастузский уголь)
SiO2 | Al2O3 | FeO | CaO | MgO | SO2 | TiO2 | K2O | Na2O | P2O5 | MnO2 |
61-62% | 27,3% | 5,65% | 1,17% | 0,49% | 0,52% | 1,49% | 0,42% | 0,32% | 0,52% | 0,17% |
Содержание химических элементов в золе, % масс.
Элементы | % масс. |
Кремний, (Si) | 29 |
Железо, (Fe) | 4,0 |
Кальций, (Ca) | 0,52 |
Алюминий, (Al) | 11,0 |
Магний, (Mg) | 0,16 |
Стронций, (Sr) | 0,044 |
Титан, (Ti) | 0,38 |
Марганец, (Mn) | 0,082 |
Барий, (Ba) | 0,20 |
Иттрий, (Y) | 0,0040 |
Лантан, (La) | 0,0014 |
Церий, (Ce) | 0,0066 |
Иттербий, (Yb) | 0,0006 |
Тербий, (Tb) | 0,0008 |
Диспрозий, (Dy) | 0,0009 |
Самарий, (Sm) | 0,0005 |
Торий, (Th) | 0,0006 |
Уран, (U) | 0,0002 |
Цирконий, (Zr) | 0,034 |
Медь, (Cu) | 0.0056 |
Ванадий, (V) | 0,014 |
Галлий, (Ga) | 0,0044 |
Примечание: анализ золы проводился в институте Гидроцветмет (г. Новосибирск).
Техника безопасности при выполнении любой работы в химической лаборатории должна быть предметом постоянного внимания, так как даже незначительная неосторожность и невнимательность могут привести к несчастным случаям с тяжелыми последствиями.
Правила работы с электрическим оборудованием.
При работе с электрооборудованием необходимо соблюдать следующие требования:
· электрооборудование должно быть исправным;
· при работе с электрооборудованием, находящимся под напряжением, применять исправные средства защиты (резиновые перчатки, изолирующие подставки и др.), работу проводить инструментом с изолированными рукоятками;
· в случае перерыва подачи электроэнергии все приборы должны быть немедленно выключены;
· в случае загорания проводов или электрооборудования, находящегося под напряжением, необходимо выключить электроэнергию и тушить огонь сухим углекислотным огнетушителем, сухим песком, покрывалом из асбеста.