Наряду с лазерами в качестве источника оптического излучения могут применяться светодиоды. Светодиод является таким же люминесцентным полупроводником типа р-п из арсенида галия, но не имеет резонансного усиления. В отличие от лазера, обладающего остронаправленным когерентным лучом, в светодиоде излучение происходит спонтанно (самопроизвольно) и луч имеет меньшую мощность и широкую направленность.
Сравнительные характеристики лазеров и светодиодов приведены в таблице №6 и на (рис.25).
Таблица №6
Излучатель | Мощность, мВт | Диаграмма, град | Ширина спектра, мм | Срок службы, ч |
Лазер Светодиод | 10... 40 5...20 | 4... 20 60... 80 | 1...3 30... 50 | 104... 105 105…106 |
Сравнивая обычный свет, создаваемый, например, лампочкой накаливания, с лазерным лучом, можно отметить, что в обоих случаях действует поток фотонов. Но в отличие от обычного света, основанного на тепловой природе возникновения и излучающего очень широкий непрерывный спектр частот, лазерный луч имеет электромагнитную основу и представляет собой монохроматический (одноволновый) луч.
Рис.25. Ширина спектра лазера (1), светодиода (2)
Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.
Рис. 26. Полупроводниковый фотодиод
В качестве приемного устройства, преобразующего свет в электричество, применяется фотодиод. Здесь используется эффект Столетова, состоящий в том, что при воздействии света на активный материал, например полупроводник, изменяются его электрические свойства и возникает электрический сигнал (рис.26).
Таким образом в лазерах электричество преобразуется в свет, а в фотодиодах происходит обратный процесс: свет преобразуется в электричество.
Системы передачи
В оптических системах передачи применяются принципиально те же методы образования многоканальной связи, что и в обычных системах передачи по электрическому кабелю, т. е. частотный и временной методы разделения каналов.
Во всех случаях оптической передачи электрический канал, создаваемый частотным или временным методом, модулирует оптическую несущую. В модулированном виде световой сигнал передается по ОК. В основном используется способ модуляции интенсивности оптической несущей, при которой от амплитуды электрического сигнала зависит мощность излучения, подаваемая в кабель.
В оптических системах передачи, как правило, применяется цифровая (импульсная) передача. Это обусловлено тем, что аналоговая передача требует высокой степени линейности промежуточных усилителей, которую трудно обеспечить в оптических системах.
Таким образом, наиболее распространенной волоконно-оптической системой связи является цифровая система с временным разделением каналов и импульсно-кодовой модуляцией (ИКМ), использующая модуляцию интенсивности излучения источника. Дуплексная связь осуществляется по двум волоконным световодам, каждый из которых предназначен для передачи информации в одном направлении.
В оптических системах связи используются преимущественно цифровые системы передачи—ИКМ на 30, 120, 480 и 1920 каналов.
Основные направления развития и применения волоконной оптики
Открылись широкие горизонты практического применения ОК и волоконно-оптических систем передачи в таких отраслях народного хозяйства, как радиоэлектроника, информатика, связь, вычислительная техника, космос, медицина, голография, машиностроение, атомная энергетика и др. Волоконная оптика развивается по шести направлениям:
11. многоканальные системы передачи информации;
12. кабельное телевидение;
13. локальные вычислительные сети;
14. датчики и системы сбора обработки и передачи информации;
15. связь и телемеханика на высоковольтных линиях;
16. оборудование и монтаж мобильных объектов.
Многоканальные ВОСП начинают широко использоваться на магистральных и зоновых сетях связи страны, а также для устройства соединительных линий между городскими АТС. Объясняется это большой информационной способностью ОК и их высокой помехозащищенностью. Особенно эффективны и экономичны подводные оптические магистрали.
Применение оптических систем в кабельном телевидении обеспечивает высокое качество изображения и существенно расширяет возможности информационного обслуживания индивидуальных абонентов. В этом случае реализуется заказная система приема и предоставляется возможность абонентам получать на экране своих телевизоров изображения газетных полос, журнальных страниц и справочных данных из библиотеки и учебных центров.
На основе ОК создаются локальные вычислительные сети различной топологии (кольцевые, звездные и др.). Такие сети позволяют объединять вычислительные центры в единую информационную систему с большой пропускной способностью, повышенным качеством и защищенностью от несанкционированного допуска.
Волоконно-оптические датчики способны работать в агрессивных средах, надежны, малогабаритны и не подвержены электромагнитным воздействиям. Они позволяют оценивать на расстоянии различные физические величины (температуру, давление, ток и др.). Датчики используются в нефтегазовой промышленности, системах охранной и пожарной сигнализации, автомобильной технике и др.
Весьма перспективно применение ОК на высоковольтных линиях электропередачи (ЛЭП) для организации технологической связи и телемеханики. Оптические волокна встраиваются в фазу или трос. Здесь реализуется высокая защищенность каналов от электромагнитных воздействий ЛЭП и грозы.
Легкость, малогабаритность, невоспламеняемость ОК сделали их весьма полезными для монтажа и оборудования летательных аппаратов, судов и других мобильных устройств.
В последнее время появилось новое направление в развитии волоконно-оптической техники — использование среднего инфракрасного диапазона волн 2...10 мкм. Ожидается, что потери в этом диапазоне не будут превышать 0,02 дБ/км. Это позволит осуществить связь на большие расстояния с участками регенерации до 1000 км. Исследование фтористых и халькогенидных стекол с добавками циркония, бария и других соединений, обладающих сверхпрозрачностью в инфракрасном диапазоне волн, дает возможность еще больше увеличить длину регенерационного участка.
Ожидаются новые интересные результаты в использовании нелинейных оптических явлений, в частности соли тонного режима распространения оптических импульсов, когда импульс может распространяться без изменения формы или периодически менять свою форму в процессе распространения по световоду. Использование этого явления в волоконных световодах позволит существенно увеличить объем передаваемой информации и дальность связи без применения ретрансляторов.
Весьма перспективна реализация в ВОЛС метода частотного разделения каналов, который заключается в том, что в световод одновременно вводится излучение от нескольких источников, работающих на разных частотах, а на приемном конце с помощью оптических фильтров происходит разделение сигналов. Такой метод разделения каналов в ВОЛС получил название спектрального уплотнения или мультиплексирования.
При построении абонентских сетей ВОЛС кроме традиционной структуры телефонной сети радиально-узлового типа предусматривается организация кольцевых сетей, обеспечивающих экономию кабеля.
Можно полагать, что в ВОСП второго поколения усиление и преобразование сигналов в регенераторах будут происходить на оптических частотах с применением элементов и схем интегральной оптики. Это упростит схемы регенерационных усилителей, улучшит их экономичность и надежность, снизит стоимость.
В третьем поколении ВОСП предполагается использовать преобразование речевых сигналов в оптические непосредственно с помощью акустических преобразователей. Уже разработан оптический телефон и проводятся работы по созданию принципиально новых АТС, коммутирующих световые, а не электрические сигналы. Имеются примеры создания многопозиционных быстродействующих оптических переключателей, которые могут использоваться для оптической коммутации.
На базе ОК и цифровых систем передачи создается интегральная сеть многоцелевого назначения, включающая различные виды передачи информации (телефонирование, телевидение, передача данных ЭВМ и АСУ, видеотелефон, фототелеграф, передача полос газет, сообщений из банков и т. д.). В качестве унифицированного принят цифровой канал ИКМ со скоростью передачи 64 Мбит/с (или 32 Мбит/с).
Для широкого применения ОК и ВОСП необходимо решить целый ряд задач. К ним прежде всего относятся следующие:
· проработка системных вопросов и определение технико-экономических показателей применения ОК на сетях связи;
· массовое промышленное изготовление одномодовых волокон, световодов и кабелей, а также оптоэлектронных устройств для них;
· повышение влагостойкости и надежности ОК за счет применения металлических оболочек и гидрофобного заполнения;
· освоение инфракрасного диапазона волн 2...10 мкм и новых материалов (фторидных и халькогенидных) для изготовления световодов, позволяющих осуществлять связь на большие расстояния;