Смекни!
smekni.com

Диффузионный СО2 лазер с ВЧЕ-разрядом (стр. 3 из 5)

, где рi – парциальные давления компонент смеси.

Коэффициент усиления активной среды СО2-лазера существенно зависит от температуры рабочей смеси Тг. Процессы накачки лазерной смеси и генерации неизменно сопровождается нагревом газа. Температура лазерной смеси Тг в установившемся состоянии пропорциональна мощности энерговыделения в разряде, т.е. Тг~jE. В отсутствие генерации заселенность верхнего лазерного уровня также пропорциональна jE. Поэтому если время столкновительной релаксации

не зависит от температуры газа и N001г, учёт возрастания
с ростом Тг лишь ослабит зависимость N001г) (пунктирная линия). Заселённость нижнего лазерного уровня находится в равновесии с основным и описывается законом Больцмана N100~
. В связи с этим при достижении некоторой критической температуры Тmax инверсная заселённость лазерной смеси исчезает. Максимальная

инверсия достигается при оптимальных температурах смеси Торt. Для смеси с cг»1,5*10-1 Вт/(м*К), Тстенки»300К зависимость населённости лазерных уровней от температуры показана на рис. 8.Типичные значения Тopt~400...500К, Тмах~700...800К.

Под действием электронных ударов и в результате столкновений возбуждённых молекул в тлеющем разряде в СО2-лазерах происходит частичная диссоциация углекислого газа СО2 ® СО + О. Отношение концентраций СО к СО2 может достигать ~12%, содержание О2 – 0,8%. Из-за этого при сохраняющемся энерговкладе возрастают потери на диссоциацию, возбуждение электронных состояний и возбуждение колебаний СО и О2. Поэтому населённость верхнего рабочего уровня СО2 падает и коэффициент усиления уменьшается. Поскольку ресурс работы СО2-лазера, определенный требованиями экономичности установки, оценивается несколькими сотнями часов, а существенный рост доли СО и О2 определяется минутами, необходимо включение в контур регенератора, в котором частично восстанавливается рабочая смесь. В диффузионном СО2-лазере целесообразно применение цеолита (SiO4+AlO4) в количестве 20мг, насыщенного парами H2O.

4. Резонатор

Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну и получить высокую интенсивность излучения, необходимую для эффективного протекания процессов вынужденного излучения возбуждённых частиц рабочего тела лазера, а следовательно, когерентного усиления генерируемой волны. Оптические резонаторы в квантовой электронике не только увеличивают время жизни кванта в системе и вероятность вынужденных переходов, но и так же, как резонансные контуры и волноводы определяют спектральные характеристики излучения.

В длинноволновом диапазоне классической электроники длина волны излучения существенно больше размеров контура и его спектральные характеристики определяются сосредоточенными параметрами электрической цепи. Длинные радиоволны при этом излучаются в пространство практически изотропно. При сокращении длины волны и переход в СВЧ-диапазону для формирования электромагнитной волны используются пустотелые объёмные резонаторы с размерами, сравнимыми с длиной волны. При этом появляется возможность формирования направленных (анизотропных) распределений излучения в пространстве с помощью внешних антенн. В ИК и видимом диапазоне длина волны излучения много меньше размеров резонатора. В этом случае оптический резонатор определяет не только частоту, но и пространственные характеристики излучения.

Простейшим типом резонатора является резонатор Фабри-Перо, состоящий из двух параллельных зеркал, расположенных друг от друга на расстоянии Lp. В технологических лазерах резонатор Фабри-Перо используется крайне редко из-за больших дифракционных потерь. Чаще используются резонаторы с одной или двумя сферическими отражающими поверхностями. Свойства этих резонаторов зависят от знака и величины радиуса их кривизны R, а также от Lp и определяются стабильностью существования в нём электромагнитной волны.

В так называемом устойчивом (стабильном) резонаторе распределение поля воспроизводится идентично при многократных проходах излучения между зеркалами и имеет стационарный характер. В результате попеременного отражения электромагнитных волн от зеркал волна формируется таким образом, что в приближении геометрической оптики не выходит за пределы зеркал в поперечном направлении и выводится из устойчивого резонатора только благодаря частичному пропусканию самих отражающих элементов. В случае отсутствия потерь, излучение могло бы существовать в устойчивом резонаторе бесконечно долго. В неустойчивом (нестабильном) резонаторе световые пучки (или описывающие их электромагнитные волны) в результате последовательных отражений от зеркал перемещаются в поперечном оси резонатора направлении к периферии и покидают его.

Свойства резонаторов и характеристики создаваемых ими пучков можно описывать и в волновом, и в геометрическом приближении. В качестве критерия применимости этих приближений удобно использовать так называемое число Френеля

, где a, L – характерные размеры задачи поперёк пучка и вдоль направления его распространения. Условие NF>>1 соответствует применимости геометрического приближения. При NF£1 необходимо учитывать также волновые свойства электромагнитного излучения.


В геометрическом приближении условие устойчивости резонатора имеет вид:
. Расстояние между зеркалами Lp в этом выражении всегда положительно, а R1 и R2 положительны только для вогнутых т.е. фокусирующих зеркал и отрицательны для зеркал с выпуклой поверхностью. Для устойчивых резонаторов существует стационарное распределение интенсивности электромагнитного поля. В общем случае интенсивность излучения в устойчивых резонаторах распределена не равномерно по всему объёму резонатора, а сосредоточена внутри области, называемой каустикой (рис.9). Радиусы w1, w2, этой области на зеркалах а также её минимальный радиус w0 в месте перетяжки определяются длиной волны и параметрами резонатора (R1, R2, Lp). Для основного типа колебаний их можно рассчитать с помощью соотношений: