1.) А 2.) М + А
Игла мартенсита сжимает зёрна аустенита .
3.) превращение протекает при условии непрерывного снижения температур .4.) превращение протекает не до конца . При фактическом завершении превращения ещё остаётся некоторое количество остаточного аустенита .
Тетрагональность мартенсита объясняется наличием в кристаллической решётке углерода , она прямопропорциональна содержанию углерода .
При выбранном режиме закалки ( нагрев до 760°С с последующим ступенчатым охлаждением ( 160°С ) в соляной ванне KOH+NaOH+H2O(3-5 %) ) получаем структуру мартенсит закалки + аустенит остаточный + карбиды (М+Аост.+Fe3C ) , твёрдость изделия - (56)[5] - 62 HRc .
* Прим.: при данном режиме закалки значительно увеличивается твёрдость и прочность изделия в результате изменения структуры материала ( стали У10 ) , хотя остаточный аустенит твёрдость снижает .
Необходимо добавить так же , что при нагреве под закалку на 760°С и выше в изделиях из стали У10 появляются трещины при закалке в воде . Ступенчатая закалка значительно уберегает изделия от появления трещин . Это связано с тем , что более медленное охлаждение при ступенчатой закалке значительно расширяет безопасный интервал температур нагрева под закалку[6] .
T, °C 840 810 780 750 HRcРис. 665 60 55 80 70 60 50 40 30 20
Твёрдость , HRc Образцы с трещинами , %
Ещё один плюс в пользу ступенчатой закалки в водном растворе солей - это то , что при закалке в масле изделие не будет иметь необходимую твёрдость , а лишь только закалка в масле может ещё заменить ступенчатую закалку без потерь на качестве изделий и потерь на браке ( образование трещин при закалке ) . Поэтому окончательно предлагается ступенчатая закалка в водном растворе солей с указанными выше параметрами .
Общие сведения о процессах , происходящих при отпуске стали У10.
В закалённой стали тетрагональность мартенсита и внутренние напряжения создают значительную хрупкость , поэтому после закалки необходимо применить отпуск.
Операция отпуска заключается в нагреве закалённой стали ниже точки Ас1 , выдержке её при заданной температуре с последующим охлаждением в воде или на воздухе . Целью отпуска является снятие внутренних напряжений после закалки и получение требуемых механических свойств .
Отпуск делится на три вида :
1. нагрев до 200°С - низкий отпуск - применяется для снятия внутренних напряжений ( структура : мартенсит отпущенный ) .
2. нагрев на 350°- 500°С - средний отпуск - повышает пластичность ( структура : мелкозернистая ферритно-цементитная смесь - троостит ) .
3. нагрев >500°С - высокий отпуск - возрастает удельная вязкость , следовательно падает прочность .
После закалки имеем структуру М + Аост. . После отпуска получаем структуру с наибольшим удельным объёмом мартенсита и наименьшим удельным объёмом аустенита остаточного .
Очевидно , что в результате изменения удельного объёма ведёт к удлинению образца . Нагрев способствует выделению углерода из исходной структуры в виде карбидной фазы Fe2C - e-карбида , имеющего гексагональную кристаллическую решётку . Вследствие этого концентрация углерода в начальной структуре начинает уменьшаться , а степень тетрагональности стремиться к единице .
e-карбид - это гетерогенная смесь Feaи необособившихся частиц карбидов . Всё это вместе составляет когерентно связанную кристаллическую решётку .
Для метчиков из стали У10 выбираем отпуск при 180°С с последующим охлаждением в воде - низкий отпуск (Лахтин Ю. М. “Материаловедение”). Низкий отпуск наряду с увеличением твёрдости , избавляет изделие от внутренних напряжений закалки , что необходимо в данном случае для повышения износостойкости изделия .
При нагреве до 200°С происходит первое превращение при отпуске - мартенсит закалочный превращается в мартенсит отпущенный .
Для плашек из стали У10 картина с отпуском обстоит несколько иначе . По специфике своего применения , плашки , наряду с высокой твёрдостью и износостойкостью , должны обладать немного большей пластичностью , чем метчики . Это обусловлено тем , что плашки применяются для наружной нарезки резьбы и при излишней твёрдости могут “крошить” поверхность заготовки . Поэтому для плашек рекомендуется применять отпуск при температуре 220°-240°С[7] - более высокой температуре , чем отпуск для метчиков . Полученная в результате отпуска твёрдость изделия будет равной 59-60 HRc .
Окончательно принимаем для плашек из стали У10 низкий отпуск при 230°С со структурой после отпуска - мартенсит отпущенный .
ВЫВОДЫ из проделанной работы .
В результате назначенной термообработки - ступенчатая закалка при 170°С в соляной ванне с последующим отпуском при 180°С ( 230°С для плашек ) и охлаждении изделия в воде - достигнуты следующие результаты :
1. твёрдость после термообработки - 62-63 HRc.(59-61 HRc для плашек )
2. увеличение прочности и износостойкости .
3. структура из зернистого перлита трансформировалась в мартенсит отпущенный .
Вывод : изделия из стали У10 , прошедшие термообработку , полностью соответствуют предъявляемым к ним требованиям ( высокая твёрдость , износостойкость , прочность ) .
Возможная замена : сталь У9 так же относится к классу инструментальных сталей . Её состав и микроструктура схожи с составом и микроструктурой стали У10, при назначенной термообработке её твёрдость окажется равной 62 HRc , к тому же прочность и износостойкость увеличатся , образование трещин при закалке незначительно ( по сравнению со сталью У10 при предлагаемом режиме термообработки ) . Следовательно , при изготовлении метчиков и плашек для ручной резки возможна замена стали У10 на сталь У9 без потерь на качестве изделий .
Название изделия | Материал | Режим закалки | Режим отпуска | Получ твёрдость |
Метчик | У10 | нагр. до 760°С с послед. | 180°С , в воде | 62-63 HRc |
Плашка | У10 | зак. в NaOH+KOH (160°C) | 230°C , в воде | 59-61 HRc |
СПИСОК ЛИТЕРАТУРЫ .
1. Геллер Ю. А. “Материаловедение”.
2. Гуляев А. П. “Металловедение” .
3. Гуляев А. П. “Термическая обработка стали” .
4. Лахтин Ю. М. “Материаловедение” .
[1] Данные : “Советский энциклопедический словарь” .
[2] По данным Лахтина Ю. М. “Материаловедение” .
[3] Гуляев А. П. “ Термическая обработка стали ”.
[4] Материал подобран на основе лекций .
[5] Поданным лабораторной работы №7.
[6] Гуляев А. П. “Термическая обработка стали” .
[7] По данным А. П. Гуляев “Металловедение” .