Очевидно, что в случае активной локации имеет место двукратное прохождение трассы, т. е. общая длина пути, половину которого проходит прямое лазерное излучение ЛЛС, а вторую половину — отраженное от цели лазерное излучение, определяется как L=21=2R.
При этом мощность оптического сигнала на входе приемника ЛЛС прямо пропорциональна квадрату спектрального коэффициента одностороннего пропускания атмосферы:
где Р20l — мощность отраженного оптического сигнала на входе приемника ЛЛС при ее работе в свободном пространстве.
Следовательно, в интервале малых дальностей (R<Rг), т. е. при работе по протяженной цели, дальность действий ЛЛС в атмосфере
R=R0Tal
Формула 4
максимальная дальность действия
Rmax=R0maxTal
Формула 5
где R0max определяется в зависимости от вида цели.
В интервале больших дальностей (R>Rг), т. е. при работе по точечной цели, дальность действия ЛЛС в атмосфере
Формула 6-7
Формула 4-7 свидетельствуют о том, что ослабление мощности лазерного зондирующего и отраженного оптических сигналов атмосферой приводит к уменьшению отношения сигнал/шум на входе приемника ЛЛС; это, в свою очередь, снижает дальность лазерного обнаружения цели.
На практике для определения коэффициента Таl при работе в «окнах прозрачности» атмосферы пользуются эмпирической формулой
Таблица 1
Состояние атмосферы (видимость) | Балл по коду | Удельное пропускание tyl, км-1 | Метеорологическая дальность видимости RМ, км |
Туман:очень сильный сильныйзаметныйслабый | 0 1 2 3 | Менее 10-34 10-34—10-8,5 10-8,5—10-3,4 10-3,4—2·10-2 | Менее 0,05 0,05—0,2 0,2—0,5 0,5—1 |
Дымка:очень сильнаясильнаязаметнаяслабая | 4 5 6 7 | 0,02—0,14 0,14—0,38 0,38—0,68 0,68—0,82 | 1—2 2—4 4—10 10—20 |
Хорошая видимостьОтличная видимость |
Рисунок 3 |
где lp — толщина рассеивающего слоя атмосферы; cl=spl/spl0(Для видимого диапазона волн cl»1);l0=0,5мкм.
Метеорологическая дальность видимости (м.д. в.)
где Vmin=0,02 — пороговая контрастная чувствительность глаза наблюдателя; lо=0,5 мкм.
Под м. д. в. Rм принято понимать предельную дальность видимости темных предметов с угловым размером 0,5° стандартным наблюдателем (Vmin=0,02) в дневное время на фоне неба. Для определения RM можно использовать Таблица 1.
Графики зависимости коэффициента полного ослабления лазерного излучения в атмосфере от метеорологической дальности видимости при различных значениях длины волны излучения sl=f(RM) для различных l приведены наРисунок 3.
Лазерные измерительные системы. Высокие потенциальные возможности ЛИС[3], обусловленные прежде всего высокими точностными характеристиками, в значительной степени ограничиваются условиями распространения световых волн в реальных материальных средах, в частности в атмосфере (Рисунок 4).
Рисунок 4
Классификация возмущающих полей атмосферы, эффекты их взаимодействия с когерентными оптическими полями и характер возникающих при этом помех.
Наибольшее влияние на оптический измерительный канал оказывает экранирующее действие облачных неоднородностей, которые характеризуются коэффициентами ослабления в десятки и сотни децибел на километр и значительными пространственными и временными масштабами. Внутренний пространственный масштаб — размер облаков и облачных образований колеблется от 10 м до 10 км, а внешний, характеризующий размер поля, достигает сотен и даже тысяч километров. Время жизни полей облачных неоднородностей составляет от нескольких часов до нескольких суток, а отдельных облачных образований — от десятков до сотен минут. Значительно меньшими величинами ослабления, а также пространственных и временных масштабов характеризуются аэрозольные поля.
В условиях прозрачной атмосферы, когда облачные и аэрозольные поля отсутствуют, определяющим становится влияние мультипликативных помех, обусловленных рассеянием оптического сигнала на турбулентных неоднородностях различного масштаба. Внутренний lо и внешний Lо масштабы турбулентных неоднородностей составляют примерно 1 мм и 1 ...100 м, а время жизни неоднородностей, соизмеримых с lо, достигает единиц миллисекунд.
Наиболее сильно влияние атмосферы проявляется в протяженных оптических каналах, например, космос — Земля и Земля — космос, которые используются для траекторных и астрономических измерений, локации Луны, решения калибровочных и юстировочных задач. Использование ЛИС в этих каналах требует учета особенностей распространения световых волн, которые обеспечивают оптический контакт с ИСЗ[4] в пределах пространства над горизонтом наблюдателя. Если к этому добавить малую продолжительность сеанса измерений из-за высокой скорости перемещения ИСЗ и низкую точность измерений из одного пункта, то вполне естественным окажется использование совокупности ЛИС, рассредоточенных на обширной территории и образующих измерительный комплекс.
Таким образом, в отличие от радиотехнических космических измерительных комплексов, в которых выбором диапазона длин волн удается существенно снизить мешающее действие атмосферных образований, эффективность применения ЛИС в значительной степени определяется как геометрией их расположения и динамикой движения ИСЗ (что сближает их с радиотехническими измерителями), так и статистическими характеристиками полей атмосферы. Эти характеристики играют основную роль при синтезе структуры измерительных комплексов, используемых при локации медленно перемещающихся объектов (Луна, стационарные ИЗО).
В зависимости от масштабов атмосферных неоднородностей и пространственно-временных характеристик их полей проблема повышения эффективности ЛИС должна решаться на разных иерархических уровнях.
Первый уровень предусматривает адаптацию структуры ЛИС к возмущениям атмосферы или целенаправленное изменение возмущений, выбор оптимальных параметров измерительной системы, комплексирование оптических и радиотехнических измерителей. Этот уровень несет в значительной степени отпечаток индивидуальных свойств ЛИС.
Второй уровень, являющийся определяющим, связан с синтезом, пространственно-временной структуры комплекса ЛИС, оптимально согласованной со стохастической структурой облачных полей и динамикой движения ИСЗ. Комплекс ЛИС обладает всеми признаками больших систем: целенаправленностью и вероятностным характером функционирования, иерархичностью структуры, сложными переплетающимися связями и возможностью адаптации к внешним условиям.
Эффективность применения ЛИС в реальных условиях в значительной степени определяется свойствами тех случайно-неоднородных сред, которые, как правило, разделяют измерительную систему и исследуемый материальный объект. Примером случайно-неоднородной, или турбулентной, среды является прозрачная атмосфера Земли, диэлектрическая проницаемость которой случайным образом изменяется в пространстве и во времени.
Турбулентные флуктуации показателя преломления существенно ухудшают тактико-технические характеристики ЛИС (дальность действия, точность измерений и др.) как из-за искажения непосредственно измеряемых параметров световой волны (например, угла прихода), так и за счет действия значительной мультипликативной помехи.
Одним из эффективных путей уменьшения возмущающего действия полей турбулентных неоднородностей на качество функционирования ЛИС является применение быстро развивающихся в последние годы адаптивных методов компенсации искажений оптического сигнала. Сущность адаптивных методов заключается в автоматической коррекции амплитуды и фазы поля волны в плоскости передающей (приемной) апертуры лазерной системы на основании данных о турбулентных искажениях оптической волны с целью получения максимальной интенсивности излучения в плоскости исследуемого материального объекта (получения наилучшего изображения объекта).