Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 5 из 32)

Анализ существующих методов прямых оценок различия показал, что шкалы, с которыми работает испытуемый, не соот­ветствуют природе психологического ме­ханизма, лежащего в основе оценивания. Поэтому был предложен подход, основан­ный на «нечетких» множествах (Л. Заде, 1974). Суть его в том , что используются так называемые «лингвистические» пере­менные вместо числовых переменных или в дополнение к ним; отношения между переменными описываются «нечеткими» («размытыми») высказываниями, а слож­ные отношения описываются «нечеткими» алгоритмами.

Первая — создание теории однородных сред, элементами которых являются уст­ройства, подобные нейронам.

Втораякомпьютерная графика, помогающая решать задачи с помощью актуализации образного мышления. Когнитивная интерактивная компьютерная графика является средством воздействия на правополушарное мышле­ние человека в процессе научного твор­чества.

Третьяспециалисты различных направлений в области ИИ считают важ­ным развитие работ, касающихся представ­лений знаний и манипулирования ими (экспертные системы).

4.4.Нетрадиционные методы моделирования

Моделирование на «размытых» множествах

Нетрадиционный подход к моделиро­ванию связан с приписыванием элементу некоторой числовой оценки, которая не может объясняться объективной или субъ­ективной вероятностью, а трактуется как степень принадлежности элемента к тому или иному множеству. Множество таких элементов называется «нечетким», или «размытым» множеством.

Каждое слово х естественного языка можно рассматривать как сжатое описа­ние нечеткого подмножества М(х) полного множества области рассуждений U, где М(х) есть значение х. В этом смысле весь язык как целое рассматривается в качестве системы, в соответствии с которой нечет­ким подмножествам множества U припи­сываются элементарные или составные символы (т. е. слова, группы слов и пред­ложения). Так, цвет объекта как некото­рую переменную, значения этой переменной (красный, синий, желтый, зеленый и т. д.) можно интерпретировать как символы нечетких подмножеств полного множества всех объектов. В этом смысле цвет явля­ется нечеткой переменной, т. е. перемен­ной, значениями которой являются сим­волы нечетких множеств. Если значения переменных — это предложения в неко­тором специальном языке, то в данном случае соответствующие переменные на­зываются лингвистическими (Л. Заде, Ю. Шрейдер).

Синергетика в психологии

Еще одна альтернатива традиционному математическому аппарату — синергетический подход, в котором математическая идеализация проявляется чувствительностью к начальным условиям и непредсказуе­мостью исхода для системы. Поведение можно описать с помощью апериодических и поэтому непредсказуемых временных ря­дов, не ограничиваясь при моделировании стохастическими процессами. Беспорядок в обществе может предшествовать появ­лению новой структуры, в то время как стохастические системы имеют низкую вероятность порождения интересных структур. Именно апериодические реше­ния детерминированных уравнений, опи­сывающих самоорганизующиеся структу­ры, помогут прийти к пониманию психо­логических механизмов самоорганизации (Фриман, 1992). В этих работах разум рас­сматривается как «странный аттрактор», управляемый уравнением сознания. Мате­матически «странный аттрактор» — это множество точек, к которому приближается траектория после затухания переходных процессов.

В основе большинства традиционных моделей психотерапии лежит концепция равновесия. Согласно синергетическому подходу, разум является нелинейной сис­темой, которая при далеких от равновесия условиях превращается в части сложных аттракторов, а равновесие — лишь пре­дельный случай. Этот тезис развивают тео­ретики психотерапии, выбирая тот или иной аспект теории хаоса. Так, например, выделяется феномен хаотического в психо­физиологической саморегуляции (Step­hen, Franes, 1992) и обнаруживаются ат­тракторы в паттернах семейного взаимо­действия (L. Chamber, 1991).

Вопрос 4. СЛОВНИК к курсу «МАТЕМАТИЧНІ МЕТОДИ В ПСИХОЛОГІЇ»

ВЫБОРКА — группа людей, на которой проводится исследование. В противоположность в. генеральной совокупностью называют множество людей, на которых распространяются результаты исследования. В. является частью генеральной совокупности.

ВЫБОРКА ПРЕДСТАВИТЕЛЬНАЯ - такая выборка (см.), которая произведена по правилам, т. е. отражает специфику генеральной совокупности как по составу, так и по индивидуальным характеристикам включенных в нее людей.

ВЫБОРОЧНАЯ ДИСПЕРСИЯ — дисперсия (см.) или разброс данных, характеризующих выборку (см.).

ВЫБОРОЧНОЕ ОТКЛОНЕНИЕ — корень квадратный из величины дисперсии (см.). Определяется по формуле:

ВЫБОРОЧНОЕ РАСПРЕДЕЛЕНИЕ (в математической статистике) — упорядоченное расположение измеренных в эксперименте или в результате проведенной психодиагностики величин от наименьшей к наибольшей, сопровождаемое данными о каждой величине и частоте ее встречаемости в выборке (см.). В. р. нередко представляется в виде соответствующего графика.

ВЫБОРОЧНОЕ СРЕДНЕЕ — среднее значение некоторой величины, определенное по имеющейся выборке ее частных значений. Устанавливается по формуле:

ГИПОТЕЗА — научно обоснованное, вполне вероятное предположение, требующее, однако, специального доказательств для своего окончательного утверждения в качестве теоретического положения Г провернется на истинность в экспериментальном или эмпирическом научном исследовании.

ГИСТОГРАММА — специальное графическое изображение распределения нескольких дискретных величин в выборке (см.). Представляет собой совокупность расположенных рядом друг с другом и вытянутых вверх прямоугольников или прямоугольных в сечении столбиков, высота которых пропорциональна частоте встречаемости каждого из значений переменной в выборке.

ДИСПЕРСИЯ ВЫБОРОЧНАЯ — математико-статистический показатель разброса экспериментальных или психодиагностических данных, характеризующий среднюю величину отклонения индивидуальных показателей от среднего значения переменной по выборке. Д. определяется по формуле:

ДИСПЕРСИОННЫЙ АНАЛИЗ — совокупность методов математико-статистического анализа, объектом рассмотрения которых являются дисперсии (см.) случайных величин. Д. а. позволяет оценивать и сравнивать между собой дисперсии различных выборок, отвечая на вопросы о том, каковы эти дисперсии, являются они одинаковыми или разными и др.

ИНТЕРВАЛ (в математической статистике) — упорядоченный набор величин, находящихся в заданных числовых границах и характеризуемых их средней величиной (см.).

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — метод математико-статистического анализа, связанный с вычислением и изучением коэффициентов корреляций (см.) между переменными.

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - математико-статистический показатель связи или зависимости, существующей между переменными величинами. Изменяется в пределах от —1 (абсолютная обратно пропорциональная зависимость) через 0 (отсутствие какой-либо зависимости) до +1 (абсолютная прямо пропорциональная зависимость).

КРИТЕРИЙ ФИШЕРА — математико-статистический критерий, пользуясь которым можно судить о сходстве и различиях в дисперсиях (см.) случайных величин.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА - область современной математики, основанная на теории вероятностей (см.) и занятая поиском законов изменения и способов измерения случайных величин, обоснованием методов расчетов, производимых с такими величинами.

МЕДИАНА — величина, разделяющая ряд упорядоченных значении на две равные по количеству входящих в них значений половины, так что справа и слева от м. оказываются одинаковые количества значений.

МЕТОДЫ СРАВНЕНИЯ ВЫБОРОЧНЫХ ДАННЫХ - методы математической статистики (см.), предполагающие анализ, обобщение и сравнение между собой данных, полученных на некоторой выборке испытуемых или на нескольких разных выборках.

МОДА (в математической статистике) — числовое значение изучаемого признака, наиболее часто встречающееся в изученной выборке (см.).

ОБЪЕКТ ИССЛЕДОВАНИЯ — тот объект, на котором проводится научное исследование. Объектом психологического исследования, например, является человек или группа людей.

ОБЪЕМ ПОНЯТИЯ — класс или классы объектов, явлений и т. п., к которым относится или которые включает в себя данное понятие.

ОПЕРАЦИОНАЛИЗАЦИЯ — требование, предъявляемое к научным понятиям. О. понятия предполагает указание на конкретные операции или действия, выполнив которые человек может убедиться в том, что данное понятие не является пустым, т. е. в том, что включенные в него явления действительно существуют.

РЕГРЕССИОННЫЙ АНАЛИЗ — метод математической статистики, позволяющий свести множество частных зависимостей между отдельными значениями переменных к их непрерывной линейной зависимости. В результате р. а. получают прямую линию, которая наилучшим образом иллюстрирует (аппроксимирует — говоря математическим языком) общий характер зависимости между изучаемыми переменными величинами.

СТАТИСТИКА — термин, имеющий два основных значения:

а) область математических или практических знаний, в которой представлены способы статистического анализа или обобщенные количественные данные о чем-либо;

б) частный показатель, с помощью которого эти данные представляются.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ — раздел современной математики, рассматривающий случайные величины, а также законы, характеризующие множества и отношения случайных величин.

ТОЧНОСТЬ ПСИХОДИАГНОСТИЧЕСКОЙ МЕТОДИКИ - способность данной методики достаточно точно оценивать степень развития у человека тех психологических качеств, для диагностики которых она предназначена. Чем больше различных градаций уровня развития данных качеств позволяет получать методика, тем она точнее.