Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 30 из 32)

Таблица 3.5

Расчет критерия Т при сопоставлении замеров физического волевого усилия

Код имени испытуемого Длительность удержания усилия на динамометре (с) Разность (tпосле-tдо) Абсолютное значение разности Рангоаый номер разности
До измерения волевых качеств и обращения к идеалу (tдо) После измерения волевых качеств и обращения к идеалу (tпосле)
1 Г. 64 25 -39 39 11
2 Кос. 77 50 -27 27 8
3 Крив. 74 77 +3 3 1
4 Кур. 95 76 -19 19 6
5 Л. 105 67 -38 38 9,5
6 М. 83 75 -8 8 4
7 Р. 73 77 +4 4 2,5
8 С. 75 71 -4 4 2,5
9 Т. 101 63 -38 38 9,5
10 Х. 97 122 +25 25 7
11 Ю. 78 60 -18 18 5
Сумма 66

Для подсчета этого критерия нет необходимости упорядочивать ряды значений по нарастанию признака. Мы можем использовать ал­фавитный список испытуемых, как в данном случае.

Первый шаг в подсчете критерия Т - вычитание каждого инди­видуального значения "до" из значения "после»3 . Мы видим из Табл. 3.5, что 8 полученных разностей - отрицательные и лишь 3 - положи­тельные. Это означает, что у 8 испытуемых длительность удержания мышечного усилия во втором замере уменьшилась, а у 3 - увеличилась. Мы столкнулись с тем случаем, когда уже сейчас мы не можем сфор­мулировать статистическую гипотезу, соответствующую первоначально­му предположению исследователя. Предполагалось, что обращение к идеалу будет увеличивать длительность мышечного усилия, а экспери­ментальные данные свидетельствуют, что лишь в 3 случаях из 11 этот показатель действительно увеличился. Мы можем сформулировать лишь гипотезу, предполагающую несущественность сдвига этого показателя в сторону снижения.

3 Можно вычитать значения "после" из значений "до", это никак не повлияет на расчет критерия. Но лучше во всех случаях придерживаться одной системы, чтобы не запутаться самим.

Сформулируем гипотезы.

H0: Интенсивность сдвигов в сторону уменьшения длительности мы­шечного усилия не превышает интенсивности сдвигов в сторону ее увеличения.

Н1: Интенсивность сдвигов а сторону уменьшения длительности мы­шечного усилия превышает интенсивность сдвигов в сторону ее увеличения.

На следующем шаге все сдвиги, независимо от их знака, должны быть проранжированы по выраженности. В Табл. 3.5 в четвертом слева столбце приведены абсолютные величины сдвигов, а в последнем столбце (справа) - ранги этих абсолютных величин. Меньшему значе­нию соответствует меньший ранг. При этом сумма рангов равна 66, что соответствует расчетной:

Теперь отметим те сдвиги, которые являются нетипичными, в данном случае - положительными. В Табл. 3.5 эти сдвиги и соответствующие им ранги выделены цветом. Сумма рангов этих "редких" сдвигов и составляет эмпирическое значение критерия Т:

где Rr - ранговые значения сдвигов с более редким знаком. Итак, в данном случае,

Тэмп=1+2,5+7=10,5

По Таблице VI Приложения 1 определяем критические значения Т для п=11:

Построим "ось значимости".

Т0,01

?

Т0,05
Зона значимости !

Тэмп

…Зона незначимости
7

10,5

13

Зона значимости в данном случае простирается влево. Действи­тельно, если бы "редких", в данном случае положительных, сдвигов не было совсем, то и сумма их рангов равнялась бы нулю. В данном же случае эмпирическое значение Т попадает в зону неопределенности:

Ответ: Но отвергается. Интенсивность отрицательного сдвига показателя физического волевого усилия превышает интенсивность по­ложительного сдвига (р<0,05).

Попытаемся графически отобразить интенсивность отрицательных и положительных сдвигов. На Рис. 3.4 слева сдвиги представлены в секундах, а справа - в своих ранговых значениях. Мы видим, что ран­жирование несколько уменьшает площади сопоставляемых облаков, или "фронтов".

Рис. 3.4. Графическое представление отрицательных и положительных сдвигов в дли­тельности удержания мышечного усилия; слева - и секундах; справа - в ранговых значе­ниях

Таким образом, исследователю придется признать, что продолжи­тельность удержания мышечного волевого усилия во втором замере снижается, и этот сдвиг неслучаен. Инструкция, ориентирующая испы­туемого на соответствие идеалу в развитии воли, оказалась гораздо ме­нее мощным фактором, чем какая-то иная сила - возможно, мышечное утомление, может быть, разочарование в себе или в возможностях дан­ного психологического эксперимента. А может быть, в момент второго замера просто перестает действовать какой-то мощный фактор, который был активен вначале? На все эти вопросы статистические методы не могут ответить, если в схему эксперимента не включена контрольная группа - в данном случае, выборка, уравновешенная с эксперименталь­ной группой по всем значимым характеристикам (полу, возрасту, про­фессии, месту обучения), у которой просто измерили бы вторично воле­вое усилие через такой же промежуток времени, не призывая соответ­ствовать идеалу в развитии воли.

Представим выполненные действия в виде алгоритма:

АЛГОРИТМ 9

Подсчет критерия Т Вилкоксона

1. Составить список испытуемых в любом порядке, например, алфавит­ном.

2. Вычислить разность между индивидуальными значениями во втором и первом замерах ("после" - "до"). Определить, что будет считать­ся "типичным" сдвигом и сформулировать соответствующие гипоте­зы.

3. Перевести разности в абсолютные величины и записать их отдель­ным столбцом (иначе трудно отвлечься от знака разности).

4. Проранжировать абсолютные величины разностей, начисляя мень­шему значению меньший ранг. Проверить совпадение полученной суммы рангов с расчетной.

5. Отметить кружками или другими знаками ранги, соответствующие сдвигам в "нетипичном" направлении.

S. Подсчитать сумму этих рангов по формуле:

где Rr - ранговые значения сдвигов с более редким знаком.

7. Определить критические значения Т для данного n по Табл. VI Приложения 1. Если Тэмп меньше или равен Ткр , сдвиг в "типичную" сторону по интенсивности достоверно

преобладает.

Вопрос 4

Критерий X2r Фридмана

Назначение критерия

Критерий X2r применяется для сопоставления показателей, изме­ренных в трех или более условиях на одной и той же выборке испы­туемых.

Критерий позволяет установить, что величины показателей от усло­вия к условию изменяются, но при этом не указывает на направление изменений.

Описание критерия

Данный критерий является распространением критерия Т Вилкоксона на большее, чем 2, количество условий измерения. Однако здесь мы ранжируем не абсолютные величины сдвигов, а сами индиви­дуальные значения, полученные данным испытуемым в 1, 2, 3 и т. д. замерах.

Например, если у испытуемого в первом замере определена ско­рость прохождения графического лабиринта 54 сек, во втором замере - 42 сек, а в третьем замере - 63 сек, то эти показатели получат ранги, соответственно, 2, 1, 3, поскольку меньшему значению, полученному во втором замере, мы начислим ранг 1, среднему значению, полученному в первом замере - ранг 2, а наибольшему значению, полученному в третьем замере - ранг 3.

После того, как все значения будут проранжированы, подсчитываются суммы рангов по столбцам для каждого из произведенных замеров.

Если различия между значениями признака, полученными в раз­ных условиях, случайны, то суммы рангов по разным условиям будут приблизительно равны. Но если значения признака изменяются в раз­ных условиях каким-то закономерным образом, то в одних условиях будут преобладать высокие ранги, а в других - низкие. Суммы рангов будут достоверно различаться между собой. Эмпирическое значение критерия X2r и указывает на то, насколько различаются суммы рангов. Чем больше эмпирическое значение X2r , тем более существенные рас­хождения сумм рангов оно отражает.

Если X2r равняется критическому значению или превышает его, различия статистически достоверны.

Гипотезы

Н0: Между показателями, полученными (измеренными) в разных усло­виях, существуют лишь случайные различия.

H1: Между показателями, полученными в разных условиях, существуют неслучайные различия.

Графическое представление критерия

Графически это будет выглядеть как "пучок" ломаных линий с изломами в одних и тех же местах. На Рис. 3.5 представлены графики изменения времени решения анаграмм" в ходе эксперимента по исследо­ванию интеллектуальной настойчивости. Мы видим, что "сырые" значе­ния пяти испытуемых дают довольно-таки "рассыпающийся пучок, хо-