Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 3 из 32)

Вопрос 2. МЕТОДОЛОГИЧЕСКИЕ ВОПРОСЫ ПРИМЕНЕ­НИЯ МАТЕМАТИКИ В ПСИХОЛОГИИ

Маститые психологи, имеющие базовое гуманитарное об­разование, критически относятся к применению математичес­ких методов в психологии, сомневаются в их полезности. Их аргументы таковы: математические методы создавались в на­уках, объекты которых не сравнимы по сложности с психоло­гическими объектами; психология слишком специфична, что бы в ней была польза от математики.

Первый аргумент в определенной мере справедлив. Поэто­му именно в психологии создавались математические методы, специально рассчитанные на сложные объекты, например, кор­реляционный и факторный анализы. Но второй аргумент явно ошибочен: психология не специфичнее многих других наук, где применяется математика. И сама история психологии подтверждает это. Вспомним идеи И. Гербарта и М.-В. Дробиша, да и весь путь развития современной психологии. Он подтверждает расхожую истину: область знания становится наукой, когда на­чинает применять математику.

Остапук Ю. В., Суходольский Г. В. Об индивидных, субъектных и личностных проявленияхиндивидуальнойтревожности//Ананьевскиечтения - 2003. СПб., Изд-во СПбГУ. С. 58-59.

В психологии всегда было много мигрантов из естественных наук, а в XX веке — из наук технических. Неплохо подго­товленные в области математики мигранты, естественно, при­меняли доступную им математику в новой психологической об­ласти, не достаточно учитывая существенную психологическую специфику, которая, конечно, существует в психологии, как и в любой науке. В результате в психологических отраслях появи­лась масса математических моделей, малоадекватных в содер­жательном отношении. Особенно это относится к психомет­рии и инженерной психологии, но и к общей, социальной и другим «популярным» психологическим отраслям.

Малоадекватные математические формализмы отталкива­ют от себя гуманитарно ориентированных психологов и под­рывают доверие к математическим методам. А между тем миг­ранты в психологию из естественных и технических наук уве­рены в необходимости математизации психологии вплоть до такого уровня, когда само существо психики будет выражено математически. При этом считается, что в математике доста­точно методов для психологического использования и психо­логам нужно только выучить математику.

В основе этих воззрений лежит ошибочная, как я считаю, мысль о всесилии математики, о ее способности, так сказать, вооружившись пером и бумагой, открывать новые тайны, по­добно тому, как в физике был предсказан позитрон.

При всем моем уважении и даже любви к математическим методам, должен сказать, что математика не всесильна; она яв­ляется одной из наук, но, благодаря абстрактности своих объек­тов, легко и с пользой применимой в других науках. Действи­тельно , в любой науке полезен расчет, и важно представлять за­кономерности в лаконичной символической форме, использо­вать наглядные схемы и чертежи. Однако, применение мате­матических методов за пределами математики должно приво­дить к утрате математической специфики.

Идущая из глубины веков вера в то, что «книга природы написана на языке математики», идущем от господа Бога — создавшего всего и вся, привела к тому, что и в языке и в мышле­нии ученых закрепились выражения «математические модели», «математические методы» в экономике, биологии, психологии, физике, но как могут существовать математические модели в физике? Ведь в ней должны быть и, конечно, существуют фи­зические модели, построенные с помощью математики. И со­здают их физики, владеющие математикой, или математики, владеющие физикой.

Короче говоря, в математической физике должны быть математико-физические модели и методы, а в математической психологии — математико-психологические. Иначе, в тради­ционном варианте «математических моделей» имеет место ма­тематический редукционизм.

Редукционизм вообще является одной из основ математи­ческой культуры: всегда сводить неизвестную, новую задачу к известной и решать ее апробированными методами. Именно математический редукционизм служит причиной появления малоадекватных моделей в психологии и других науках.

Еще недавно среди наших психологов было распространен­ным мнение: психолога должны формулировать задачи для ма­тематиков, которые смогут их корректно решить. Это мнение явно ошибочное: решать специфические задачи могут лишь спе­циалисты, но являются ли таковыми в психологии математи­ки, — нет, конечно. Рискну утверждать, что математикам также трудно решать психологические задачи, как психологам — за­дачи математические: ведь надо изучать ту научную область, к которой задача относится, а на это годы нужны и еще интерес к «чужой» научной области, в которой иные критерии научных достижений. Так, математику для научной стратификации не­обходимо совершать «математические» открытия—доказывать новые теоремы. Причем же здесь психологические задачи? Их должны решать сами психологи, которым надо научиться ис­пользовать подходящие математические методы. Таким обра­зом, снова возвращаемся к вопросу об адекватности и полезности математических методов в психологии.

Не только в психологии, но в любой науке, полезность ма­тематики состоит в том, что ее методы обеспечивают возмож­ность количественных сравнений, лаконичные символические интерпретации, обоснованность прогнозов и решений, эксп­ликацию правил управления. Но все это — при условии адек­ватности применяемых математических методов.

Адекватность — это соответствие: метод должен соответ­ствовать содержанию, причем соответствовать в том смысле, что бы отображение не математического содержания матема­тическими средствами было гомоморфным. К примеру, обыч­ные множества не адекватны для описания процессов позна­ния: в них не отображается частота необходимых повторений. Адекватными здесь будут лишь мультимножества. Читатель, познакомившийся с содержанием текста предыдущих глав, лег­ко поймет, что рассмотренные математические методы в целом адекватны для психологических приложений, а в деталях адек­ватность нужно оценивать конкретно.

Общее правило таково: если психологический объект харак­теризуется конечным набором свойств, то адекватный метод ото­бразит весь набор, а если, что-то не отобразится, то и адекват­ность снижается. Таким образом, мерой адекватности служит ко­личество отображаемых методом содержательных свойств. При этом важны два обстоятельства: наличие конкурирующих, эк­вивалентных по возможности применения, методов и возмож­ность взаимных вербально-символических, табличных, графи­ческих и аналитических отображений результатов.

Среди конкурирующих методов следует выбирать наибо­лее простые, либо понятные, и желательно проверять результат разными методами. Например, дисперсионным анализом и ма­тематическим планированием эксперимента можно обоснован­но выявлять зависимости в науке.

Не следует ограничиваться одной-двумя из математичес­ких форм, нужно, по видимости (а она всегда существует) использовать их все, создавая определенную избыточность в ма­тематическом описании результатов.

Важнейшим условием конкретного применения математи­ческих методов является, — помимо их понимания, разумеет­ся, — содержательная и формальная интерпретация. В психо­логии следует различать и уметь выполнять четыре вида интер­претаций; психолого-психологические, психолого-математи­ческие, математико-математические и (обратные) математико-психологические. Они организованы в цикл.

Любая научно-исследовательская или практическая задача в психологии сначала подвергается психолого-психологическим интерпретациям, посредством которых от теоретических воз­зрений переходят к операционально определяемым понятиям и эмпирическим процедурам. Затем наступает черед психоло­го-математических интерпретаций, с помощью которых вы­бираются и реализуются математические методы эмпиричес­кого исследования. Полученные данные надо обработать и в процессе обработки осуществляются математико-математичес­кие интерпретации. Наконец, результаты обработки следует интерпретировать содержательно, т. е. выполнить математико-психологическую интерпретацию уровней значимости, аппрок­симированных зависимостей и т. д. Цикл замкнулся, и либо за­дача решена и можно переходить к другой, либо необходимо уточнить предыдущую и повторить исследование. Такова логи­ка действий в применении математики, — и не только в психо­логии, но и в других науках.

И последнее. Нельзя досконально изучить все рассмотрен­ные в этой книге математические методы впрок, раз и навсег­да. Для овладения любым достаточно сложным методам нуж­ны многие десятки, а то и сотни обучающих попыток. Но по­знакомится с методами и попытаться их понять в общем и це­лом нужно впрок, а с деталями можно познакомится в даль­нейшем, по мере надобности.

Вопрос 3. Математическая психология

3.1. Введение

Математическая психология — это раз­дел теоретической психологии, использую­щий для построения теорий и моделей математический аппарат.

«В рамках математической психологии должен осуществляться принцип абстракт­но-аналитического исследования, в кото­ром изучается не конкретное содержание субъективных моделей действительности, а общие формы и закономерности психи­ческой деятельности» [Крылов, 1995].

Объект математической психологии: естественные системы, обладающие пси­хическими свойствами; содержательные психологические теории и математические модели таких систем. Предмет — разра­ботка и применение формального аппарата для адекватного моделирования систем, обладающих психическими свойствами. Метод — математическое моделирование.

Процесс математизации психологии начался с момента ее выделения в экспе­риментальную дисциплину. Этот процесс проходит ряд этапов.