Вопрос 2. МЕТОДОЛОГИЧЕСКИЕ ВОПРОСЫ ПРИМЕНЕНИЯ МАТЕМАТИКИ В ПСИХОЛОГИИ
Маститые психологи, имеющие базовое гуманитарное образование, критически относятся к применению математических методов в психологии, сомневаются в их полезности. Их аргументы таковы: математические методы создавались в науках, объекты которых не сравнимы по сложности с психологическими объектами; психология слишком специфична, что бы в ней была польза от математики.
Первый аргумент в определенной мере справедлив. Поэтому именно в психологии создавались математические методы, специально рассчитанные на сложные объекты, например, корреляционный и факторный анализы. Но второй аргумент явно ошибочен: психология не специфичнее многих других наук, где применяется математика. И сама история психологии подтверждает это. Вспомним идеи И. Гербарта и М.-В. Дробиша, да и весь путь развития современной психологии. Он подтверждает расхожую истину: область знания становится наукой, когда начинает применять математику.
Остапук Ю. В., Суходольский Г. В. Об индивидных, субъектных и личностных проявленияхиндивидуальнойтревожности//Ананьевскиечтения - 2003. СПб., Изд-во СПбГУ. С. 58-59.
В психологии всегда было много мигрантов из естественных наук, а в XX веке — из наук технических. Неплохо подготовленные в области математики мигранты, естественно, применяли доступную им математику в новой психологической области, не достаточно учитывая существенную психологическую специфику, которая, конечно, существует в психологии, как и в любой науке. В результате в психологических отраслях появилась масса математических моделей, малоадекватных в содержательном отношении. Особенно это относится к психометрии и инженерной психологии, но и к общей, социальной и другим «популярным» психологическим отраслям.
Малоадекватные математические формализмы отталкивают от себя гуманитарно ориентированных психологов и подрывают доверие к математическим методам. А между тем мигранты в психологию из естественных и технических наук уверены в необходимости математизации психологии вплоть до такого уровня, когда само существо психики будет выражено математически. При этом считается, что в математике достаточно методов для психологического использования и психологам нужно только выучить математику.
В основе этих воззрений лежит ошибочная, как я считаю, мысль о всесилии математики, о ее способности, так сказать, вооружившись пером и бумагой, открывать новые тайны, подобно тому, как в физике был предсказан позитрон.
При всем моем уважении и даже любви к математическим методам, должен сказать, что математика не всесильна; она является одной из наук, но, благодаря абстрактности своих объектов, легко и с пользой применимой в других науках. Действительно , в любой науке полезен расчет, и важно представлять закономерности в лаконичной символической форме, использовать наглядные схемы и чертежи. Однако, применение математических методов за пределами математики должно приводить к утрате математической специфики.
Идущая из глубины веков вера в то, что «книга природы написана на языке математики», идущем от господа Бога — создавшего всего и вся, привела к тому, что и в языке и в мышлении ученых закрепились выражения «математические модели», «математические методы» в экономике, биологии, психологии, физике, но как могут существовать математические модели в физике? Ведь в ней должны быть и, конечно, существуют физические модели, построенные с помощью математики. И создают их физики, владеющие математикой, или математики, владеющие физикой.
Короче говоря, в математической физике должны быть математико-физические модели и методы, а в математической психологии — математико-психологические. Иначе, в традиционном варианте «математических моделей» имеет место математический редукционизм.
Редукционизм вообще является одной из основ математической культуры: всегда сводить неизвестную, новую задачу к известной и решать ее апробированными методами. Именно математический редукционизм служит причиной появления малоадекватных моделей в психологии и других науках.
Еще недавно среди наших психологов было распространенным мнение: психолога должны формулировать задачи для математиков, которые смогут их корректно решить. Это мнение явно ошибочное: решать специфические задачи могут лишь специалисты, но являются ли таковыми в психологии математики, — нет, конечно. Рискну утверждать, что математикам также трудно решать психологические задачи, как психологам — задачи математические: ведь надо изучать ту научную область, к которой задача относится, а на это годы нужны и еще интерес к «чужой» научной области, в которой иные критерии научных достижений. Так, математику для научной стратификации необходимо совершать «математические» открытия—доказывать новые теоремы. Причем же здесь психологические задачи? Их должны решать сами психологи, которым надо научиться использовать подходящие математические методы. Таким образом, снова возвращаемся к вопросу об адекватности и полезности математических методов в психологии.
Не только в психологии, но в любой науке, полезность математики состоит в том, что ее методы обеспечивают возможность количественных сравнений, лаконичные символические интерпретации, обоснованность прогнозов и решений, экспликацию правил управления. Но все это — при условии адекватности применяемых математических методов.
Адекватность — это соответствие: метод должен соответствовать содержанию, причем соответствовать в том смысле, что бы отображение не математического содержания математическими средствами было гомоморфным. К примеру, обычные множества не адекватны для описания процессов познания: в них не отображается частота необходимых повторений. Адекватными здесь будут лишь мультимножества. Читатель, познакомившийся с содержанием текста предыдущих глав, легко поймет, что рассмотренные математические методы в целом адекватны для психологических приложений, а в деталях адекватность нужно оценивать конкретно.
Общее правило таково: если психологический объект характеризуется конечным набором свойств, то адекватный метод отобразит весь набор, а если, что-то не отобразится, то и адекватность снижается. Таким образом, мерой адекватности служит количество отображаемых методом содержательных свойств. При этом важны два обстоятельства: наличие конкурирующих, эквивалентных по возможности применения, методов и возможность взаимных вербально-символических, табличных, графических и аналитических отображений результатов.
Среди конкурирующих методов следует выбирать наиболее простые, либо понятные, и желательно проверять результат разными методами. Например, дисперсионным анализом и математическим планированием эксперимента можно обоснованно выявлять зависимости в науке.
Не следует ограничиваться одной-двумя из математических форм, нужно, по видимости (а она всегда существует) использовать их все, создавая определенную избыточность в математическом описании результатов.
Важнейшим условием конкретного применения математических методов является, — помимо их понимания, разумеется, — содержательная и формальная интерпретация. В психологии следует различать и уметь выполнять четыре вида интерпретаций; психолого-психологические, психолого-математические, математико-математические и (обратные) математико-психологические. Они организованы в цикл.
Любая научно-исследовательская или практическая задача в психологии сначала подвергается психолого-психологическим интерпретациям, посредством которых от теоретических воззрений переходят к операционально определяемым понятиям и эмпирическим процедурам. Затем наступает черед психолого-математических интерпретаций, с помощью которых выбираются и реализуются математические методы эмпирического исследования. Полученные данные надо обработать и в процессе обработки осуществляются математико-математические интерпретации. Наконец, результаты обработки следует интерпретировать содержательно, т. е. выполнить математико-психологическую интерпретацию уровней значимости, аппроксимированных зависимостей и т. д. Цикл замкнулся, и либо задача решена и можно переходить к другой, либо необходимо уточнить предыдущую и повторить исследование. Такова логика действий в применении математики, — и не только в психологии, но и в других науках.
И последнее. Нельзя досконально изучить все рассмотренные в этой книге математические методы впрок, раз и навсегда. Для овладения любым достаточно сложным методам нужны многие десятки, а то и сотни обучающих попыток. Но познакомится с методами и попытаться их понять в общем и целом нужно впрок, а с деталями можно познакомится в дальнейшем, по мере надобности.
Вопрос 3. Математическая психология
3.1. Введение
Математическая психология — это раздел теоретической психологии, использующий для построения теорий и моделей математический аппарат.
«В рамках математической психологии должен осуществляться принцип абстрактно-аналитического исследования, в котором изучается не конкретное содержание субъективных моделей действительности, а общие формы и закономерности психической деятельности» [Крылов, 1995].
Объект математической психологии: естественные системы, обладающие психическими свойствами; содержательные психологические теории и математические модели таких систем. Предмет — разработка и применение формального аппарата для адекватного моделирования систем, обладающих психическими свойствами. Метод — математическое моделирование.
Процесс математизации психологии начался с момента ее выделения в экспериментальную дисциплину. Этот процесс проходит ряд этапов.