Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения.
Рис. 1.7. Пример «оси значимости» для критерия Q Розенбаума
Критические значения критерия обозначены как Qо,о5 и Q0,01, эмпирическое значение критерия как Qэмп. Оно заключено в эллипс.
Вправо от критического значения Q0,01 простирается "зона значимости" - сюда попадают эмпирические значения, превышающие Q 0,01 и, следовательно, безусловно значимые.
Влево от критического значения Q o,05 простирается "зона незначимости", - сюда попадают эмпирические значения Q, которые ниже Q 0,05, и, следовательно, безусловно незначимы.
Мы видим, что Q0,05=6; Q0,01=9; Qэмп.=8;
Эмпирическое значение критерия попадает в область между Q0,05 и Q0,01. Это зона "неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (Но), но еще не можем принять гипотезы об их достоверности (H1).
Практически, однако, исследователь может считать достоверными уже те различия, которые не попадают в зону незначимости, заявив, что они достоверны при р<0,05, или указав точный уровень значимости полученного эмпирического значения критерия, например: р=0,02. С помощью таблиц Приложения 1 это можно сделать по отношению к критериям Н Крускала-Уоллиса, χ2r Фридмана, L Пейджа, φ* Фишера, λ Колмогорова.
Уровень статистической значимости или критические значения критериев определяются по-разному при проверке направленных и ненаправленных статистических гипотез.
При направленной статистической гипотезе используется односторонний критерий, при ненаправленной гипотезе - двусторонний критерий. Двусторонний критерий более строг, поскольку он проверяет различия в обе стороны, и поэтому то эмпирическое значение критерия, которое ранее соответствовало уровню значимости р<0,05, теперь соответствует лишь уровню р<0,10.
В данном руководстве исследователю не придется всякий раз самостоятельно решать, использует ли он односторонний или двухсторонний критерий. Таблицы критических значений критериев подобраны таким образом, что направленным гипотезам соответствует односторонний, а ненаправленным - двусторонний критерий, и приведенные значения удовлетворяют тем требованиям, которые предъявляются к каждому из них. Исследователю необходимо лишь следить за тем, чтобы его гипотезы совпадали по смыслу и по форме с гипотезами, предлагаемыми в описании каждого из критериев.
Вопрос 7. Мощность критериев
Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как она неверна, называется ошибкой II рода.
Вероятность такой ошибки обозначается как β. Мощность критерия - это его способность не допустить ошибку II рода, поэтому:
Мощность=1—β
Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить различия там, где другие оказываются неспособными это сделать, или выявляют более высокий уровень значимости различий. Возникает вопрос: а зачем же тогда использовать менее мощные критерии? Дело в том, что основанием для выбора критерия может быть не только мощность, но и другие его характеристики, а именно:
а)простота;
б)более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);
в)применимость по отношению к неравным по объему выборкам;
г)большая информативность результатов.
Вопрос 8. Классификация задач и методов их решения
Множество задач психологического исследования предполагает те или иные сопоставления. Мы сопоставляем группы испытуемых по какому-либо признаку, чтобы выявить различия между ними по этому признаку. Мы сопоставляем то, что было "до" с тем, что стало "после" наших экспериментальных или любых иных воздействий, чтобы определить эффективность этих воздействий. Мм сопоставляем эмпирическое распределение значений признака с каким-либо теоретическим законом распределения или два эмпирических распределения между собой, с тем, чтобы доказать неслучайность выбора альтернатив или различия в форме распределений.
Мы, далее, можем сопоставлять два признака, измеренные на одной и той же выборке испытуемых, для того, чтобы установить степень согласованности их изменений, их сопряженность, корреляцию между ними.
Наконец, мы можем сопоставлять индивидуальные значения, полученные при разных комбинациях каких-либо существенных условий, с тем, чтобы выявить характер взаимодействия этих условий в их влиянии на индивидуальные значения признака.
Именно эти задачи позволяет решить тот набор методов, который предлагается настоящим руководством. Все эти методы могут быть использованы при так называемой "ручной" обработке данных.
Вопрос 9. Принятие решения о выборе метода математической обработки
Если данные уже получены, то вам предлагается следующий алгоритм определения задачи и метода.
АЛГОРИТМ 1
Принятие решения о задаче и методе обработки на стадии, когда данные уже получены
1. По первому столбцу Табл. 1.2 определить, какая из задач стоит в вашем исследовании.
2. По второму столбцу Табл. 1.2 определить, каковы условия решения вашей задачи, например, сколько выборок обследовано или на какое количество
групп вы можете разделить обследованную выборку.
3. Обратиться к соответствующей главе и по алгоритму принятия решения о выборе критерия, приведенного в конце каждой главы, определить, какой
именно метод или критерий вам целесообразно использовать.
Если вы еще находитесь на стадии планирования исследования, то лучшее заранее подобрать математическую модель, которую вы будете в дальнейшем использовать. Особенно необходимо планирование в тех случаях, когда в перспективе предполагается использование критериев тенденций или (в еще большей степени) дисперсионного анализа. В этом случае алгоритм принятия решения таков:
АЛГОРИТМ 2
Принятие решения о задаче и методе обработка на стадия планирования исследования
1.Определите, какая модель вам кажется наиболее подходящей для доказательства ваших научных предположений.
2.Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.
3.Если вы убедились, что это то, что вам нужно, вернитесь к разделу "Ограничения критерия" и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не скольких выборок, монотонно различающихся по какому-либо признаку, например, по возрасту и т.п.).
4.Проводите исследование, а затем обрабатывайте полученные данные по заранее выбранному алгоритму, если вам удалось выполнить ограничения.
5.Если ограничения выполнить не удалось, обратитесь к алгоритму 1.
В описании каждого критерия сохраняется следующая последовательность изложения:
• назначение критерия;
• описание критерия;
• гипотезы, которые он позволяет проверить;
• графическое представление критерия;
• ограничения критерия;
• пример или примеры.
Кроме того, для каждого критерия создан алгоритм расчетов. Если критерий сразу удобнее рассчитывать по алгоритму, то он приводится в разделе "Пример"; если алгоритм легче можно воспринять уже после рассмотрения примера, то он приводится в конце параграфа, соответствующего данному критерию.
Курс: «Математические методы в психологии»
(Для студентов психологов и социальных работников)
Лекция № 4
ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА
Вопросы:
1. Обоснование задачи сопоставления и сравнения
2. Q-критерий Розенбаума
3. U – критерий Манна-Уитни
4. Н – критерий Крускала-Уоллиса
5. S – критерий тенденций Джонкира
6. Алгоритм принятия решения о выборе критерия для сопоставлений
Вопрос 1 Обоснование задачи сопоставления и сравнения
Очень часто перед исследователем в психологии стоит задача выявления различий между двумя, тремя и более выборками испытуемых. Это может быть, например, задача определения психологических особенностей хронически больных детей по сравнению со здоровыми, юных правонарушителей по сравнению с законопослушными сверстниками или различий между работниками государственных предприятий и частных фирм, между людьми разной национальности или разной культуры и, наконец, между людьми разного возраста в методе "поперечных срезов".
Иногда по выявленным в исследовании статистически достоверным различиям формируется "групповой профиль" или "усредненный портрет" человека той или иной профессии, статуса, соматического заболевания и др. (см., например, Cattell R.B., Eber H.W., Tatsuoka MM., 1970).
В последние годы все чаще встает задача выявления психологического портрета специалиста новых профессий: "успешного менеджера", "успешного политика", "успешного торгового представителя", "успешного коммерческого директора" и др. Такого рода исследования не всегда подразумевают участие двух или более выборок. Иногда обследуется одна, но достаточно представительная выборка численностью не менее 60 человек, а затем внутри, этой выборки выделяются группы более и менее успешных специалистов, и их данные по исследованным переменным сопоставляются между собой. В самом простом случае критерием для разделения выборки на "успешных" и "неуспешных-" будет средняя величина по показателю успешности. Однако такое деление является довольно грубым: лица, получившие близкие оценки по успешности, могут оказаться в противоположных группах, а лица, заметно различающиеся по оценкам успешности, - в одной и той же группе. Это может исказить результаты сопоставления групп или, по крайней мере, сделать различия между группами менее заметными.