Вопрос 3 Распределение признака. Параметры распределения
Распределением признака называется закономерность встречаемости разных его значений (Плохинский Н.А., 1970, с. 12).
В психологических исследованиях чаще всего ссылаются на нормальное распределение.
Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине - достаточно часто. Нормальным такое распределение называется потому, что оно очень часто встречалось в естественно-научных исследованиях и казалось "нормой" всякого массового случайного проявления признаков. Это распределение следует закону, открытому тремя учеными в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции (Плохинский Н.А., 1970, с.17). График нормального распределения представляет собой привычную глазу психолога-исследователя так называемую колоколообразную кривую (см, напр., Рис. 1.1, 1.2).
Параметры распределения - это его числовые характеристики, указывающие, где "в среднем" располагаются значения признака, насколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака. Наиболее практически важными параметрами являются математическое ожидание, дисперсия, показатели асимметрии и эксцесса.
В реальных психологических исследованиях мы оперируем не параметрами, а их приближенными значениями, так называемыми оценками параметров. Это объясняется ограниченностью обследованных выборок. Чем больше выборка, тем ближе может быть оценка параметра к его истинному значению. В дальнейшем, говоря о параметрах, мы будем иметь в виду юс оценки.
Среднее арифметическое (оценка математического ожидания) вычисляется по формуле:
где x i - каждое наблюдаемое значение признака;
i - индекс, указывающий на порядковый номер данного значения признака;
n - количество наблюдений;
∑ - знак суммирования.
Оценка дисперсии определяется по формуле:
где Xi - каждое наблюдаемое значение признака;
x - среднее арифметическое значение признака;
п - количество наблюдений.
Величина, представляющая собой квадратный корень из несмещенной оценки дисперсии (S), называется стандартным отклонением или средним квадратнческим отклонением. Для большинства исследователей привычно обозначать эту величину греческой буквой δ (сигма), а не S. На самом деле, δ - это стандартное отклонение в генеральной совокупности, a S - несмещенная оценка этого параметра в исследованной выборке. Но, поскольку S - лучшая оценка δ (Fisher R.A., 1938), эту оценку стали часто обозначать уже не как S, а как δ:
В тех случаях, когда какие-нибудь причины благоприятствуют более частому появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторонней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней, или отрицательной - более высокие (см. Рис. 1.5).
Показатель асимметрии (А) вычисляется по формуле:
Для симметричных распределений А=0.
Рис. 1.5. Асимметрия распределений.
А) Левая, положительная
Б) правая, отрицательная
В тех случаях, когда какие-либо причины способствуют преимущественному появлению средних или близких к средним значений, образуется распределение с положительным эксцессом. Если же в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см. Рис. 1.6).
Показатель эксцесса (Е) определяется по формуле:
Рис. 1.6. Эксцесс: а) положительный; б) отрицательный
В распределениях с нормальной выпуклостью Е=0.
Параметры распределения оказывается возможным определить только по отношению к данным, представленным по крайней мере в интервальной шкале. Как мы убедились ранее, физические шкалы длин, времени, углов являются интервальными шкалами, и поэтому к ним применимы способы расчета оценок параметров, по крайней мере, с формальной точки зрения. Параметры распределения не учитывают
истинной психологической неравномерности секунд, миллиметров и других физических единиц измерения.На практике психолог-исследователь может рассчитывать параметры любого распределения, если единицы, которые он использовал при измерении, признаются разумными в научном сообществе.
Вопрос 4. Статистические гипотезы
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде. Благодаря гипотезам исследователь не теряет путеводной нити в процессе расчетов и ему легко понять после их окончания, что, собственно, он обнаружил.
Статистические гипотезы подразделяются на нулевые и альтернативные, направленные и ненаправленные.
Нулевая гипотеза - это гипотеза об отсутствии различий.
Она обозначается как Hо называется нулевой потому, что содержит число 0: X1—Х2=0, где X1, X2 - сопоставляемые значения признаков.
Нулевая гипотеза - это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза - это гипотеза о значимости различий.
Она обозначается как Н1. Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Бывают задачи, когда мы хотим доказать как раз незначимость различий, то есть подтвердить нулевую гипотезу. Например, если нам нужно убедиться, что разные испытуемые получают хотя и различные, но уравновешенные по трудности задания, или что экспериментальная и контрольная выборки не различаются между собой по каким-то значимым характеристикам. Однако чаще нам все-таки требуется доказать значимость различий, ибо они более информативны для нас в поиске нового. Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.
Направленные гипотезы
H0: X1 не превышает Х2
H1: X1 превышает Х2
Ненаправленные гипотезы
H0; X1 не отличается от Х2
H1: X1 отличается от Х2
Если вы заметили, что в одной из групп индивидуальные значения испытуемых по какому-либо признаку, например по социальной смелости, выше, а в другой ниже, то для проверки значимости этих различий нам необходимо сформулировать направленные гипотезы.
Если мы хотим доказать, что в группе А под влиянием каких-то экспериментальных воздействии произошли более выраженные изменения, чем в группе Б, то нам тоже необходимо сформулировать направленные гипотезы.
Если же мы хотим доказать, что различаются формы распределения признака в группе А и Б, то формулируются ненаправленные гипотезы.
При описании каждого критерия в руководстве даны формулировки гипотез, которые он помогает нам проверить.
Построим схему - классификацию статистических гипотез.
Проверка гипотез осуществляется с помощью критериев статистической оценки различий.
Вопрос 5. Статистические критерии
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью (Суходольский Г.В., 1972, с. 291).
Статистические критерии обозначают также метод расчета определенного числа и само это число.
Когда мы говорим, что достоверность различий определялась по критерию X2, то имеем в виду, что использовали метод X2 для расчета определенного числа.
Когда мы говорим, далее, что X2 = 12,676, то имеем в виду определенное число, рассчитанное по методу X2. Это число обозначается как эмпирическое значение критерия.
По соотношению эмпирического и критического значений критерия мы можем судить о том, подтверждается ли или опровергается нулевая гипотеза. Например, если X2эмп > X2кр., то Н0 отвергается.
В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна-Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.