Метод множественных корреляций в отличие от метода парных корреляций позволяет выявить общую структуру корреляционных зависимостей, существующих внутри многомерного экспериментального материала, включающего более двух переменных, и представить эти корреляционные зависимости в виде некоторой системы.
ФАКТОРНЫЙ АНАЛИЗ
Один из наиболее распространенных вариантов этого метода — факторный анализ — позволяет определить совокупность внутренних взаимосвязей, возможных причинно-следственных связей, существующих в экспериментальном материале. В результате факторного анализа обнаруживаются так называемые факторы — причины, объясняющие множество частных (парных) корреляционных зависимостей.
Фактор — математико-статистическое понятие. Будучи переведенным на язык психологии (эта процедура называется содержательной или психологической интерпретацией факторов), он становится психологическим понятием. Например, в известном 16-факторном личностном тесте Р. Кеттела, который подробно рассматривался в первой части книги, каждый фактор взаимно однозначно связан с определенными чертами личности человека.
С помощью выявленных факторов объясняют взаимозависимость психологических явлений. Поясним сказанное на примере. Допустим, что в некотором психолого-педагогическом эксперименте изучалось взаимовлияние таких переменных, как характер, способности, потребности и успеваемость учащихся. Предположим далее, что, оценив каждую из этих переменных у достаточно представительной выборки испытуемых и подсчитав коэффициенты парных корреляций между всевозможными парами данных переменных, мы получили следующую матрицу интеркорреляций (в ней справа и сверху цифрами обозначены в перечисленном выше порядке изученные в эксперименте переменные, а внутри самого квадрата показаны их корреляции друг с другом; поскольку всевозможных пар в данном случае меньше, чем клеток в матрице, то заполнена только верхняя часть матрицы, расположенная выше ее главной диагонали).
Анализ корреляционной матрицы показывает, что переменная 1 (характер) значимо коррелирует с переменными 2 и 3 (способности и потребности). Переменная 2 (способности) достоверно коррелирует с переменной 3 (потребности), а переменная 3 (потребности) — с переменной 4 (успеваемость). Фактически из шести имеющихся в матрице коэффициентов корреляции четыре являются достаточно высокими и, если предположить, что они определялись на совокупности испытуемых, превышающей 10 человек, — значимыми.
1 | 2 | 3 | 4 |
1 | 0,82 | 0,50 | 0,04 |
2 | 0,40 | 0,24 | |
3 | 0,75 | ||
4 |
Зададим некоторое правило умножения столбцов цифр на строки матрицы: каждая цифра столбца последовательно умножается на каждую цифру строки и результаты парных произведений записываются в строку аналогичной матрицы. Пример: если по этому правилу умножить друг на друга три цифры столбца и строки, представленные в левой части матричного равенства, то получим матрицу, находящуюся в правой части этого же равенства:
2 | X | 2 | 3 | 4 | = | 4 | 6 | 8 |
3 | 6 | 9 | 12 | |||||
4 | 8 | 12 | 16 |
Задача факторного анализа по отношению к только что рассмотренной является как бы противоположной. Она сводится к тому, чтобы по уже имеющейся матрице парных корреляций, аналогичной представленной в правой части показанного выше матричного равенства, отыскать одинаковые по включенным в них цифрам столбец и строку, умножение которых друг на друга по заданному правилу порождает корреляционную матрицу.
Иллюстрация:
Х1 | х | Х1 | Х2 | Х3 | Х4 | = | 0,16 | 0,50 | 0,30 |
Х2 | 0,16 | 0,40 | 0,24 | ||||||
Х3 | 0,50 | 0,40 | 0,75 | ||||||
Х4 | 0,30 | 0,24 | 0,75 |
Здесь х1 х2, x3 и х4 — искомые числа.
Для их точного и быстрого определения существуют специальные математические процедуры и программы для ЭВМ.
Допустим, что мы уже нашли эти цифры: x1= 0,45, х2 =,36 х3 = 1,12, х4= 0,67. Совокупность найденных цифр и называется фактором, а сами эти цифры — факторными весами или нагрузками.
Эти цифры соответствуют тем психологическим переменным, между которыми вычислялись парные корреляции,
х1— характер,
х2 — способности,
х3— потребности,
х4— успеваемость.
Поскольку наблюдаемые в эксперименте корреляции между переменными можно рассматривать как следствие влияния на них общих причин — факторов, а факторы интерпретируются в психологических терминах, мы можем теперь от факторов перейти к содержательной психологической интерпретации обнаруженных статистических закономерностей. Фактор содержит в себе ту же самую информацию, что и вся корреляционная матрица, а факторные нагрузки соответствуют коэффициентам корреляции. В нашем примере х3(потребности) имеет наибольшую факторную нагрузку (1,12), а х2 (способности) — наименьшую (0,36).
Следовательно, наиболее значимой причиной, влияющей на все остальные психологические переменные, в нашем случае являются потребности, а наименее значимой — способности. Из корреляционной матрицы видно, что связи переменной х3 со всеми остальными являются наиболее сильными (от 0,40 до 0,75), а корреляции переменной х2 — самыми слабыми (от 0,16 до 0,40).
Чаще всего в итоге факторного анализа определяется не один, а несколько факторов, по-разному объясняющих матрицу интеркорреляций переменных. В таком случае факторы делят на генеральные, общие и единичные.
Генеральными называются факторы, все факторные нагрузки которых значительно отличаются от нуля (нуль нагрузки свидетельствует о том, что данная переменная никак не связана с остальными и не оказывает на них никакого влияния в жизни).
Общие — это факторы, у которых часть факторных нагрузок отлична от нуля.
Единичные — это факторы, в которых существенно отличается от нуля только одна из нагрузок. На рис. 75 схематически представлена структура факторного отображения переменных в факторах различной степени общности.
Переменные, между которыми определены в результате эксперимента парные корреляционные зависимости
Рис. 75. Структура факторного отображения взаимосвязей переменных.
Отрезки, соединяющие факторы с переменными, указывают на высокие
факторные нагрузки
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА
1. Готтсданкер Р. Основы психологического эксперимента. М:
МГУ, 1982. - 464 с. (Корреляционные исследования: 378-424.)
2. Закс Л. Статистическое оценивание. М., 1976.
(Что такое статистика: 37-39. Нормальная кривая и нормальное распределение: 63-71. Арифметическое среднее и стандартное отклонение: 72-79. Медиана и мода: 91-94. Распределение Стъюдента: 129-136. Хи-квадрат распределение: 136-150. Распределение Фишера: 150-153. Сравнение двух выборочных дисперсий из нормальных совокупностей: 241-245. Сравнение двух выборочных средних из нормальных совокупностей: 245-270. Проверка распределений по хи-квадрат критерию согласия: 295-296. Коэффициент ранговой корреляции Спирмена: 368-372. Оценивание прямой регрессии: 371-381. Проверка равенства нескольких дисперсий: 448-453).
3. Кулагин Б.В. Основы профессиональной психодиагностики. Л.,
1984.-216 с. (Измерение в психодиагностике: 13-20. Корреляция и факторный анализ: 20-33.)
4. Фресс П., Пиаже Ж. Экспериментальная психология. Вып. I и П. М., 1966. (Измерение в психологии: 197-229. Проблема надежности измерения: 229-231).
5. Практикум по общей психологии / Под ред. А.И. Щербакова. М., 1990. -287 с. [Методы психологии (с элементами математической статистики): 20-39].
6. Психодиагностические методы (в комплексном лонгитюдном
исследовании студентов) / Под ред. А.А. Бодалева, М.Д. Дворяшиной, И.М. Палея. Л., 1976. - 248 с. (Основные математические процедуры психодиагностического исследования: 35-51.)
Курс: «Математические методы в психологии»
(Для студентов психологов и социальных работников)
Лекция № 3
ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ
Учебные вопросы:
1.Признаки и переменные.
2.Шкалы измерения.
3.Распределение признака. Параметры распределения.