Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 13 из 32)

Метод множественных корреляций в отличие от метода пар­ных корреляций позволяет выявить общую структуру корреля­ционных зависимостей, существующих внутри многомерного экспериментального материала, включающего более двух пере­менных, и представить эти корреляционные зависимости в виде некоторой системы.

ФАКТОРНЫЙ АНАЛИЗ

Один из наиболее распространенных вариантов этого мето­да — факторный анализ — позволяет определить совокупность внутренних взаимосвязей, возможных причинно-следственных связей, существующих в экспериментальном материале. В ре­зультате факторного анализа обнаруживаются так называемые факторыпричины, объясняющие множество частных (пар­ных) корреляционных зависимостей.

Фактор — математико-статистическое понятие. Будучи пере­веденным на язык психологии (эта процедура называется содер­жательной или психологической интерпретацией факторов), он становится психологическим понятием. Например, в известном 16-факторном личностном тесте Р. Кеттела, который подробно рас­сматривался в первой части книги, каждый фактор взаимно одно­значно связан с определенными чертами личности человека.

С помощью выявленных факторов объясняют взаимозави­симость психологических явлений. Поясним сказанное на при­мере. Допустим, что в некотором психолого-педагогическом экс­перименте изучалось взаимовлияние таких переменных, как ха­рактер, способности, потребности и успеваемость учащихся. Предположим далее, что, оценив каждую из этих переменных у достаточно представительной выборки испытуемых и подсчитав коэффициенты парных корреляций между всевозможными па­рами данных переменных, мы получили следующую матрицу ин­теркорреляций (в ней справа и сверху цифрами обозначены в пе­речисленном выше порядке изученные в эксперименте переменные, а внутри самого квадрата показаны их корреляции друг с другом; поскольку всевозможных пар в данном случае меньше, чем клеток в матрице, то заполнена только верхняя часть матри­цы, расположенная выше ее главной диагонали).

Анализ корреляционной матрицы показывает, что пе­ременная 1 (характер) значи­мо коррелирует с переменны­ми 2 и 3 (способности и по­требности). Переменная 2 (способности) достоверно коррелирует с переменной 3 (потребности), а переменная 3 (потребности) — с перемен­ной 4 (успеваемость). Факти­чески из шести имеющихся в матрице коэффициентов корреля­ции четыре являются достаточно высокими и, если предполо­жить, что они определялись на совокупности испытуемых, пре­вышающей 10 человек, — значимыми.

1

2

3

4

1

0,82

0,50

0,04

2

0,40

0,24

3

0,75

4

Зададим некоторое правило умножения столбцов цифр на стро­ки матрицы: каждая цифра столбца последовательно умножается на каждую цифру строки и результаты парных произведений за­писываются в строку аналогичной матрицы. Пример: если по это­му правилу умножить друг на друга три цифры столбца и строки, представленные в левой части матричного равенства, то получим матрицу, находящуюся в правой части этого же равенства:

2 X 2 3 4 = 4 6 8
3 6 9 12
4 8 12 16

Задача факторного анализа по отношению к только что рас­смотренной является как бы противоположной. Она сводится к тому, чтобы по уже имеющейся матрице парных корреляций, ана­логичной представленной в правой части показанного выше мат­ричного равенства, отыскать одинаковые по включенным в них цифрам столбец и строку, умножение которых друг на друга по заданному правилу порождает корреляционную матрицу.

Иллю­страция:

Х1

х

Х1

Х2

Х3

Х4

=

0,16

0,50

0,30

Х2

0,16

0,40

0,24

Х3

0,50

0,40

0,75

Х4

0,30

0,24

0,75

Здесь х1 х2, x3 и х4 — искомые числа.

Для их точного и быст­рого определения существуют специальные математические про­цедуры и программы для ЭВМ.

Допустим, что мы уже нашли эти цифры: x1= 0,45, х2 =,36 х3 = 1,12, х4= 0,67. Совокупность найденных цифр и называется фактором, а сами эти цифры — факторными весами или нагруз­ками.

Эти цифры соответствуют тем психологическим переменным, между которыми вычислялись парные корреляции,

х1— харак­тер,

х2способности,

х3— потребности,

х4— успеваемость.

По­скольку наблюдаемые в эксперименте корреляции между пере­менными можно рассматривать как следствие влияния на них общих причин — факторов, а факторы интерпретируются в пси­хологических терминах, мы можем теперь от факторов перейти к содержательной психологической интерпретации обнаружен­ных статистических закономерностей. Фактор содержит в себе ту же самую информацию, что и вся корреляционная матрица, а факторные нагрузки соответствуют коэффициентам корреляции. В нашем примере х3(потребности) имеет наибольшую фактор­ную нагрузку (1,12), а х2 (способности) — наименьшую (0,36).

Следовательно, наиболее значимой причиной, влияющей на все остальные психологические переменные, в нашем случае явля­ются потребности, а наименее значимой — способности. Из кор­реляционной матрицы видно, что связи переменной х3 со всеми остальными являются наиболее сильными (от 0,40 до 0,75), а кор­реляции переменной х2самыми слабыми (от 0,16 до 0,40).

Чаще всего в итоге факторного анализа определяется не один, а несколько факторов, по-разному объясняющих матрицу интер­корреляций переменных. В таком случае факторы делят на ге­неральные, общие и единичные.

Генеральными называются фак­торы, все факторные нагрузки которых значительно отличают­ся от нуля (нуль нагрузки свидетельствует о том, что данная пе­ременная никак не связана с остальными и не оказывает на них никакого влияния в жизни).

Общие — это факторы, у которых часть факторных нагрузок отлична от нуля.

Единичные — это факторы, в которых существенно отличается от нуля только одна из нагрузок. На рис. 75 схематически представлена структура факторного отображения переменных в факторах различной сте­пени общности.

Переменные, между которыми определены в результате эксперимента парные корреляционные зависимости

Рис. 75. Структура факторного отображения взаимосвязей переменных.

Отрезки, соединяющие факторы с переменными, указывают на высокие

факторные нагрузки

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

1. Готтсданкер Р. Основы психологического эксперимента. М:
МГУ, 1982. - 464 с. (Корреляционные исследования: 378-424.)

2. Закс Л. Статистическое оценивание. М., 1976.

(Что такое статистика: 37-39. Нормальная кривая и нормаль­ное распределение: 63-71. Арифметическое среднее и стандарт­ное отклонение: 72-79. Медиана и мода: 91-94. Распределение Стъюдента: 129-136. Хи-квадрат распределение: 136-150. Рас­пределение Фишера: 150-153. Сравнение двух выборочных дис­персий из нормальных совокупностей: 241-245. Сравнение двух выборочных средних из нормальных совокупностей: 245-270. Проверка распределений по хи-квадрат критерию согласия: 295-296. Коэффициент ранговой корреляции Спирмена: 368-372. Оце­нивание прямой регрессии: 371-381. Проверка равенства не­скольких дисперсий: 448-453).

3. Кулагин Б.В. Основы профессиональной психодиагностики. Л.,
1984.-216 с. (Измерение в психодиагностике: 13-20. Корреляция и фактор­ный анализ: 20-33.)

4. Фресс П., Пиаже Ж. Экспериментальная психология. Вып. I и П. М., 1966. (Измерение в психологии: 197-229. Проблема надежности из­мерения: 229-231).

5. Практикум по общей психологии / Под ред. А.И. Щербакова. М., 1990. -287 с. [Методы психологии (с элементами математической статисти­ки): 20-39].

6. Психодиагностические методы (в комплексном лонгитюдном
исследовании студентов) / Под ред. А.А. Бодалева, М.Д. Дворяшиной, И.М. Палея. Л., 1976. - 248 с. (Основные математические процедуры психодиагностического исследования: 35-51.)

Курс: «Математические методы в психологии»

(Для студентов психологов и социальных работников)

Лекция № 3

ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ

Учебные вопросы:

1.Признаки и переменные.

2.Шкалы измерения.

3.Распределение признака. Параметры распределения.