Смекни!
smekni.com

Курс лекций Математические методы в психологии (стр. 12 из 32)

К коэффициенту ранговой корреляции в психолого-педаго­гических исследованиях обращаются в том случае, когда при­знаки, между которыми устанавливается зависимость, являют­ся качественно различными и не могут быть достаточно точно оценены при помощи так называемой интервальной измеритель­ной шкалы.

Интервальной называют такую шкалу, которая по­зволяет оценивать расстояния между ее значениями и судить о том, какое из них больше и насколько больше другого.

Напри­мер, линейка, с помощью которой оцениваются и сравниваются длины объектов, является интервальной шкалой, так как, поль­зуясь ею, мы можем утверждать, что расстояние между двумя и шестью сантиметрами в два раза больше, чем расстояние между шестью и восемью сантиметрами. Если же, пользуясь некоторым измерительным инструментом, мы можем только утверждать, что одни показатели больше других, но не в состоянии сказать на сколько, то такой измерительный инструмент называется не ин­тервальным, а порядковым.

Большинство показателей, которые получают в психолого-педагогических исследованиях, относятся к порядковым, а не к интервальным шкалам (например, оценки типа «да», «нет», «ско­рее нет, чем да» и другие, которые можно переводить в баллы), поэтому коэффициент линейной корреляции к ним неприменим. В этом случае обращаются к использованию коэффициента ран­говой корреляции, формула которого следующая:

где Rs — коэффициент ранговой корреляции по Спирмену;

diразница между рангами показателей одних и тех же ис­пытуемых в упорядоченных рядах;

п — число испытуемых или цифровых данных (рангов) в кор­релируемых рядах.

Пример. Допустим, что экспериментатора интере­сует, влияет ли интерес учащихся к учебному предмету на их успеваемость. Предположим, что с помощью некоторой психо­диагностической методики удалось измерить величину интере­са к учению и выразить его для десяти учащихся в следующих цифрах: 5, 6, 7, 8, 2, 4, 8, 7, 2, 9. Допустим также, что при помощи другой методики были определены средние оценки этих же уча­щихся по данному предмету, оказавшиеся соответственно рав­ными: 3,2; 4,0; 4,1; 4,2; 2,5; 5,0; 3,0; 4,8; 4,6; 2,4.

Упорядочим оба ряда оценок по величине цифр и припишем каждому из учащихся по два ранга; один из них указывает на то, какое место среди остальных данных ученик занимает по успе­ваемости, а другой — на то, какое место среди них же он занима­ет по интересу к учебному предмету. Ниже приведены ряды цифр, два из которых (первый и третий) представляют исходные данные, а два других (второй и четвертый) — соответствующие ранги1:

2-1,5

2,4-1

2-1,5

2,5-2

4-3

3,0-3

5-4

3,2-4

6-5

4,0-5

7-6,5

4,1-6

7-6,5

4,2-7

8-8,5

4,6-8

9-10

5,0-10

Определив сумму квадратов различий в рангах (∑d2i) и под­ставив нужное значение в числитель формулы, получаем, что ко­эффициент ранговой корреляции равен 0,97, т.е. достаточно вы­сок, что и говорит о том, что между интересом к учебному пред­мету и успеваемостью учащихся действительно существует ста­тистически достоверная зависимость.

Однако по абсолютным значениям коэффициентов корреля­ции не всегда можно делать однозначные выводы о том, являют­ся ли они значимыми, т.е. достоверно свидетельствуют о суще­ствовании зависимости между сравниваемыми переменными. Может случиться так, что коэффициент корреляции, равный 0,50, не будет достоверным, а коэффициент корреляции, составивший 0,30, — достоверным. Многое в решении этого вопроса зависит от того, сколько показателей было в коррелируемых друг с дру­гом рядах признаков: чем больше таких показателей, тем мень­шим по величине может быть статистически достоверный коэф­фициент корреляции.

В табл. 35 представлены критические значения коэффици­ентов корреляции для различных степеней свободы.

1 Если исходные данные, которые ранжируются, одинаковы, то и их ранги также будут одинаковыми. Они получаются путем суммирования и деления пополам тех рангов, которые соответствуют этим данным.

Таблица 35

Критические значения коэффициентов корреляции

для различных степеней свободы (n - 2) и разных вероятностей

допустимых ошибок

Число

степеней

свободы

Уровень значимости

0,05

0,01

0,001

2

0,9500

0,9900

0,9900

3

8783

9587

9911

4

8114

9172

9741

5

0,7545

0,8745

0,9509

6

7067

8343

9249

7

6664

7977

8983

8

6319

7646

8721

9

6021

7348

8471

10

0,5760

0,7079

0,8233

И

5529

6833

8010

12

5324

6614

7800

13

5139

6411

7604

14

4973

6226

7419

15

0,4821

0,6055

0,7247

16

4683

5897

7084

17

4555

5751

6932

18

4438

5614

6788

19

4329

5487

6625

20

0,4227

0,5368

0,6524

21

4132

5256

6402

22

4044

5151

6287

23

3961

5052

6177

24

3882

4958

6073

25

0,3809

0,4869

0,5974

26

3739

4785

5880

27

3673

4705

5790

28

3610

4629

5703

29

3550

4556

5620

30

0,3494

0,4487

0,5541

31

3440

4421

5465

32

3388

4357

5392

33

0,3338

0,4297

0,5322

34

3291

4238

5255

35

0,3246

0,4182

0,5189

36

3202

4128

5126

37

3160

4076

5066

38

3120

4026

5007

39

3081

3978

4951

40

0,3044

0,3932

0,4896

(В данном случае степенью свободы будет число, равное п — 2, где п — ко­личество данных в коррелируемых рядах.) Заметим, что значи­мость коэффициента корреляции зависит и от заданного уров­ня значимости или принятой вероятности допустимой ошибки в расчетах. Если, к примеру, коррелируется друг с другом два ря­да цифр по 10 единиц в каждом и получен коэффициент корре­ляции между ними, равный 0,65, то он будет значимым на уров­не 0,95 (он больше критического табличного значения, состав­ляющего 0,6319 для вероятности допустимой ошибки 0,05, и меньше критического значения 0,7646 для вероятности допусти­мой ошибки 0,01).