Смекни!
smekni.com

Математические уравнения и функции (стр. 1 из 2)

Варивант №2

Задание 1

Дан треугольник ABC, где А(-3,2), В(3,-1), С(0,3). Найти:

1. Длину стороны АВ;

2. Внутренний угол А с точностью до градуса;

3. Уравнение и длину высоты, опущенной из вершины С;

4. Точку пересечения высот;

5. Уравнение медианы, опущенной из вершины С;

6. Систему неравенств, определяющих треугольник АВС;

7. Сделать чертеж;

Решение:

1. Найдем координаты вектора АВ:

Длина стороны АВ равна:

2. Угол А будем искать как угол между векторами АВ и АС(-3,1)

Тогда

3. Прямая СК перпендикулярна АВ проходит через точку С(0,3) и имеет нормалью вектор

.

По формуле получим уравнение высоты:

Сокращаем на 3 получим уравнение высоты:

4. Координаты основания медианы будут:

;

Уравнение медианы найдем, пользуясь данной формулой, как уранение прямой, проходящей через 2 точки: С и М

Так как знаменатель левой части равен нулю, то уравнение медианы будет иметь такой вид х=0

5. Известно что высоты треугольника пересекаются в одной точке Р. Уравнение высоты СК найдено, выведем аналогично высоту BD проходящую через точку В перпендикулярно вектору


Координаты точки Р найдем как решение системы уравнений:

х=11 у=23

6. Длину высоты hc будем ее искать как расстояние от точки С до прямой АВ. Эта прямая проходит через точку А и имеет направляющий вектор

.

Теперь воспользовавшись формулой

Подставляя в нее координаты точки С(0,3)


Задание 2

Даны векторы

Доказать, что
образуют базис четырехмерного пространства, и найти координаты вектора «в» в этом базисе.

Решение:

1. Докажем, что подсистема

линейно независима:

Из четвертого уравнения имеем , что

, тогда из первого, второго и третьего следует, что
. Линейная независимость доказана.

Докажем, что векторы

можно представить в виде линейных комбинации векторов
.

Очевидно,


Найдем представление

через
.

Из четвертого уравнения находим

и подставляем в первые три

Получили , что данная система векторов не может называться базисом!

Задание 3

Найти производные функций:


Задание 4.

Исследовать функцию и построить ее график


1. Область определения:

, то есть

2. Кривая

имеет вертикальную ассимптоту х=-1, так как

Находим наклонные асимптоты.

а то означает, что есть вертикальная асимптота у=0.

3. Функция общего вида, так как

и

4. Функция периодичностью не обладает

5. Находим производную функции

Получаем 3 критические точки х=-1 х=1, и х=5.

Результаты исследования на монотонность и экстремумы оформляется в виде таблицы

х
1
5
y’ - - 0 + 0 -
y убывает убывыает 0 min возрастает 0,074 убывает

6. Находим вторую производную функции

Получаем критические точки х=-1; х=0,22; х=6,11

Результаты исследований на выпуклость и точки перегиба оформляем в виде таблицы.

х
0.22
6.11
y” - + 0 + 0 -
y выпукла вогнута 0,335 перегиб вогнута 0,072 выпукла

7. Находим точки пересечения графика с осями координат Ох и Оу

получаем точку (0;1);
получаем точку (1;0)

8. При х=-2, у=-9, при х=-5, у=-0,56, при х=-10, у=-0,166

9. Строим график в соответствии с результатами исследований:

Задание 5

Найти неопределенные интегралы и проверить их дифференцированием.

а)

; б)
; в)
; г)

Решение:

а) сделаем подстановку sin3x=t, тогда dt=cos3x dx, следовательно:

Проверка:

б) сделаем подстановку

Проверка:


в) Воспользуемся способом интегрирования по частям

Проверка:

г) воспользуемся способом интегрирования рациональных дробей