Минимизация функции многих переменных. Приближённые численные методы. Метод Монте-Карло
1. Минимизация функции многих переменных. Аналитические методы.
Теорема Вейерштрасса: пусть
Определение: точки максимума и минимума называются точками экстремума функции. Теорема Ферма: (необходимое условие существования экстремума). Пусть функция
Обобщение: если
Определение: квадратичная форма
называется положительно (отрицательно) определённой, если
Пример:
1)
2)
3)
Определение: квадратичную форму, которая принимает как положительные, так и отрицательные значения называют неопределённой формой.
Пример:
4)
Теперь, мы уже можем сформулировать достаточные условия существования экстремумов для функции многих переменных.
Теорема: пусть
(т.е. второй дифференциал функции
На вопрос: когда квадратичная форма является положительно (или отрицательно) определённой, отвечает критерий Сильвестра:
Для того, чтобы квадратичные формы (2),(3) были положительно-определёнными, необходимо и достаточно, чтобы
Для того, чтобы квадратичная форма (2), (3) была отрицательно-определённой, необходимо и достаточно, чтобы
Как видим, для нахождения точек экстремума нам нужно решать систему, в общем, нелинейных уравнений (1), а для выяснения характера точки экстремума нужно на основе критерия Сильвестра проверять условия (5), (6) и (7) для дифференциальной квадратичной формы (4) в точке экстремума. Проиллюстрируем этот метод на примере 5: Функция двух переменных:
Решение: найдём критические точки:
откуда получаем критические точки: А(0;0); В(3;2). Исследуем эти точки. Для этого нам нужно выяснить, в каждой из этих точек, к какому виду принадлежит квадратичная форма:
В точке A(0;0) имеем:
так что
Сильвестра не дают ответа на вопрос о наличии экстремума в этой точке.
Для решения этого вопроса надо привлечь старшие производные и формы более высокого порядка, для которых соответствующей общей теории пока нет, поэтому нужно обращаться к численным исследованиям.
В точке B(3;2) имеем:
получаем матрицу квадратичной формы:
т.е. по критерию Сильвестра B(3;2) является точкой максимума:
2. Метод градиентного спуска.
Как мы видели из последнего численного примера, строгий аналитический метод не всегда приводит к цели (случай, когда
Пусть, нам нужно найти
где
где
где
………………………..
Здесь m – число итераций. Процесс итерации останавливается, когда достигается требуемая предельная погрешность, т.е. когда выполнены условия остановки итерации: