2.Для любых
Замечание. Если функция распределения F(x) непрерывная, то свойство выполняется и при замене знаков ≤ и < на < и ≤.
3.
, . , .4.Функция F(x) непрерывна слева. (т.е.
).5. Вероятность того, что значение случайной величины Х больше некоторого числа х, вычисляется по формуле.
.Достоверное событие {-∞<x<+∞} представим в виде двух несовместимых событий.
. Найдем их вероятности .Поскольку вероятность достоверного события равна единице, то
.Отсюда .6)мат. ожидание дискретной случайной велечины и его свойства (включая теорему 1)
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. Обозначают математическое ожидание случайной величины Х через MX или М(Х). Если случайная величина Х принимает конечное число значений, то
.Если случайная величина Х принимает счетное число значений, то
, причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.Математическое ожидание дискретной случайной величины—это неслучайная величина (т.е. число, постоянная).
1.Математическое ожидание постоянной величины равно самой постоянной
M(C)=C.
Будем рассматривать постоянную С как дискретную случайную величину, которая принимает одно возможное значение С с вероятностью 1. Следовательно,
.Замечание. Произведение постоянной величины С на дискретную случайную величину Х определяется как дискретная случайная величина СХ, возможные значения которой равны произведениям постоянной С на возможные значения Х, вероятности возможных значений СХ равны вероятностям соответствующих возможных значении Х.
2.множитель можно выносить за знак математического ожидания:
M(CX)=CM(X).
Если случайная величин Х имеет ряд распределения
X | x1 | x2 | … | xn | … |
P | p1 | p2 | … | pn | … |
Ряд распределения случайной величины СХ
СХ | Сx1 | Сx2 | … | Сxn | … |
Р | p1 | p2 | … | pn | … |
Математическое ожидание случайной величины СХ
.Случайные величины X1,X2,…,Xn называются независимыми, если для любых числовых множеств B1,B2,…,Bn
3.Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий
.Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.
4.Математическое ожидание суммы двух случайных величин рано сумме математических ожиданий слагаемых:
.Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.
Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании:
.Будем рассматривать в качестве случайной величины Х число появлений события А в n независимых испытаниях. Очевидно, общее число Х появлений события А в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Поэтому если Х1—число появлений события в первом испытании, Х2—во втором,…, Хn—в n-ом, то общее число появлений события
. По свойству 4: .Согласно примеру 2
. Таким образом, получим .7)дисперсия дискретной случайной велечины и её свойства (включая теорему2): 43 стр.
Дисперсией случайной величины называется число
. Дисперсия является мерой разброса значений случайной величины вокруг ее математического ожидания.Средним квадратическим отклонением случайной величины Х называется число
.Свойства дисперсии.
1.Дисперсия постоянной величины С равна 0. DC=0.
2.Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
. .3.Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
.Следствие. Дисперсия суммы нескольких независимых случайных величин равна сумме дисперсий этих величин.
Теорема 2. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:
.Случайная величина Х—число появлений события А в n независимых испытаниях.
, где Хi—число наступлений событий в i-ом испытании, взаимно независимые, т.к. исход каждого испытания не зависит от исходов остальных. . . Т.к. MX1=p. , то . Очевидно, что дисперсия остальных случайных величин также равна pq, откуда .