Смекни!
smekni.com

Математика (стр. 1 из 5)

Канашский филиал

КОНТРОЛЬНАЯ РАБОТА № 1

По математике

Вариант 3

Студента 1 курса экономического факультета

Шифр: 04653033 Учебная группа: 53-06

Работа выслана в Чувашский госуниверситет

«____» ____________2006 г.

Передана на кафедру «Экономики и управления»

Оценка___________ «___» _____________2006г.

Преподаватель: Бычков Владимир Порфирьевич

Возвращена в деканат______________________


Математика

Вариант 3

Даны вершины А(х11) ,В(х22), С(х33) треугольника. Требуется найти: 1)длину стороны ВС; 2)площадь треугольника; 3)уравнение стороны ВС; 4)уравнение высоты проведенной из вершины А; 5)длину высоты проведенной из вершины А; 6)уравнение биссектрисы внутреннего угла

;

7)угол

в радианах с точностью до 0,01; 8)систему неравенств определяющих множество точек треугольника. Сделать чертеж.

вариант 3: А(5;-1), В(1;-4), С(-4;8).

Решение:

1)Длина стороны ВС:

;

2)Длина стороны АВ:

;

Скалярное произведение векторов

и

Угол

:

cos
=

;
=arcos 0,2462=75,75
;

3) Уравнение стороны ВС:

;
;
;
;
;

4) Уравнение высоты, проведенной из вершины А:

;
;

Условие перпендикулярности двух прямых:

;
;

;
;
;
;

5) Длина высоты, проведенной из вершины А:

6)

Уравнение прямой АС:

Уравнение биссектрисы внутреннего угла

:

7) Угол

в радианах с точностью до 0,01:

8) Уравнение стороны ВС:

Уравнение стороны АС:

Уравнение стороны АВ:

Система неравенств, определяющих множество внутренних точек треугольника.

Задание 13.

Составить уравнение прямой, проходящей через точку А(4;1) на расстоянии 4 единиц от точки В(-4;0).

Решение:

Уравнение пучка прямых, проходящих через точку А:

По условию задачи

Искомые прямые:

Задание 23.

Составить уравнение линии, расстояние каждой точки которой от точки F(8;0) вдвое больше, чем от прямой Х-2=0. Сделать чертеж.

Решение:

По условию задачи:

- уравнение гиперболы с центром в точке
и полуосями

Задание 33.

Составить уравнение параболы и ее директрисы, если известно что парабола проходит через точки пересечения прямой

с окружностью
и ось
является осью симметрии параболы. Сделать чертеж.

Решение.

Рассмотрим уравнение окружности:

Найдем точки пересечения окружности и прямой.

Координаты точек пересечения окружности и прямой

т.к. парабола симметрична относительно ОХ, то уравнение имеет вид
учитывая что
найдем параметр p

Таким образом, уравнение параболы

Уравнение директрисы параболы:

Задание 43.

Дано уравнение параболы f(x;y)=0. Сделать параллельный перенос осей координат так, чтобы в новой системе координат XO1Y уравнение параболы приняло вид X2=aY или Y2=aX. Построить обе системы координат и параболу.